Analysis and Visualization of Hierarchical
Graphs

Giorgos Kritikakis

Thesis submitted in partial fulfillment of the requirements for the
Masters’ of Science degree in Computer Science and Engineering

University of Crete
School of Sciences and Engineering
Computer Science Department
Voutes University Campus, 700 13 Heraklion, Crete, Greece

Thesis Advisor: Prof. loannis G. Tollis

Analysis and Visualization of Hierarchical Graphs
Abstract

In this work, we developed the Path-Based Framework (PBF). PBF is a re-
cent graph drawing framework that resembles but also differs from the classical
Sugiyama technique. PBF is based on the concepts of path and chain decomposi-
tion. We extended that idea. We draw all edges, apply edge bundling, minimize
the height using a compaction technique, and reduce the width by applying al-
gorithms similar to task scheduling. As a result, we present a generic framework
suitable for hierarchical graph drawings.

Furthermore, we explore cutting-edge path and chain decomposition algorithms
and applications. Our algorithms are linear or almost linear, and our results are
very close to the optimum.

More precisely, we will show how to create a sub-optimal chain decomposition
of a DAG (directed acyclic graph) in almost linear time. The number of vertex-
disjoint chains our algorithm creates is very close to the minimum. The time
complexity of our algorithm is O(|E| + ¢ * [), where ¢ is the number of path
concatenations and [is the longest path of the graph. We will give a detailed
explanation in the following sections. This fundamental concept has a wide area
of applications. We will focus on a few of them. We will extensively describe how
to solve the transitive closure of graphs and answer queries in constant time by
creating an indexing scheme. Our method needs O (k¢ *|FEyeq|) time and O (k. *|V])
space. The factor k. is a sub-optimal number of chains, E,.q is the set of non-
transitive edges, and |V is the number of nodes. Moreover, we show that |E,..q4| is
bounded, |E,¢q| < width*|V|, and we illustrate how to find a subset of E, (the set
of transitive edges) without calculating the transitive closure. Using our theory,
we can enhance every transitive closure technique. We accompany our approach
and algorithms with extensive experimental work. Our experiments reveal that
our methods are not merely theoretically efficient since the performance is even
better in practice.

Keywords: Algorithms, graph algorithms, performance, chain decomposition,
path decomposition, transitive closure, transitive reduction, hierarchy, query pro-
cessing, DAG, data structures, network analysis.

TitAhoc

ITegiandn

Ye auto to épyo éyoupe avontiiel to Path — based — Framework (PBF). To
PBF eivon évo mpdc@ato TAACLO OTTIXOTOMONG LERUPYIXWDY YRUPNUATWY TOU HOL-
alel oAAG emtiong Bapépel and To xAaoixd TAAUCLO TEGTPKY QPAcEWY Tou Sugiyama.
To PBF BaociCetar otn 16€a TNE SLEOTAONEC TOU YRAPOU OE XAVAALL X0 LOVOTATLAL.
Enextelvope auth v 18éa. Zoypapiloupe OAec Tig oxpés, e@opuolovue emxdiudn
oMUY, EAAYLOTOTOOVUE TO VPOC, XU PELOVOUUE TO TAATOC TOL YRUPNHUATOS EQIpE-
uolovtag TeYVIXEC OUOLEG UE AUTEC TOU YPOVO-TIPOYQUUUNTIONOU EQYUoLWY. §2¢ €x
TOUTOU, TEOUGLACOUUE EVaL YEVIXO UOVTENO OTTIXOTIOMNONG LERURYIXWY YRUPTUATGDV.

Axoun,eepeuviooue ahyoplduoug ouyunc yio SLECTOCT YEAPMY OE LOVOTETIO Xol
xavéhio. Ov oakyopriuor pag etvan ypauuxol 1) GYEBOV YRoUUIXOL, X0t To ATOTEAEGUOTA
Toug ebvat TOAD xovTd oTo BErTioTo. Emnpdodeta, avantiloue Evo mhalolo ontixono-
inong epapy v ypapnudtwy tou Basiletar oTNV SLACTIOY O LOVOTATLO X0l XAUVEALYL
xan o Bondder var amoxohdipouye xploWes TTUYES TWV LERUEYIOY EVOS YRAPOL.

AxpiBéotepa, Yo deifoupe TdE var SNULOVEYHCOUPE Lo UTORBERTIO T SldoTaon o
XAVAALYL EVOC AXUXAOU XATELYUVOUEVOL YRUPTUATOS GE GYEDOV YRuuuxd yedvo. O
aprduog TV XaVoALOY Tou dnuloveYel o alyopriuog pag, to ool dev polpdlovTol
xovolg xopPoug, elvar mohd xovtd oto ehdyoto. H ypovixry mohumioxdtntor TOU
alyopiduou pac etvor O(|E| + ¢ x 1), émou ¢ eivor o aptdude twv xavohidv xou I o
apriuog TG UEYOADTERNS BLadPOUAC TOU Yedpou. Oo BOCoUUE avahuTxr eCHYNON
ot endpeva xe@dhato. Autr) 1 Yepehiddng évvola €xel €va eupl QACUOL EQPUPUOYWYV.
Oa emxevipwiolue ot pepés and auTtéc. Oo teplypdPoupe eXTEVAOC KOS Vo AOGOU-
HE TO TEOBANUA NS UETABOTIXNC HAELOTOTNTOC XU TOE VO ATOVTOUE EPWTAUATO OF
oTolERO YPOVO BNUIOVEYOVTOS €V YVWoTO oy anod deixtec. H yédodog uog yeet-
dleton O(ke * |Eredl) yeovo xou O(ke x |V|) yodpo. O bpoc ke eivor to péyedoc yrog
UTOPBEATIOTNG OLIOTIUONE XAVAALOY, O 6p0¢ Epeq elvon T0 GUVORO TV UN-HETOBATINGDY
AV TOU YpdPou, xot 0 6poc |V| unodnhdver tov aprdud tov x6uBwy. Emmiéov
Yo Bet€oupe g 10 |Eeq| ppdletar, |Epeq| < width x [V|, xou Yo neprypddouye nwg
umopolue va Bpolue éva UTooUVORo Tou Eiy (0UVORO HETABAUTIXMY axuY) Ywpelc va
unohoyiooupe 0 petoPBatiny xhewotétnTo. Ou uedodoroyleg pog cuvodebovton amd
extevAc melpdpota. To melpduota pog detyvouv 6Tt oL ahydpriuol yog 6ev elvon amhdg
anodotixol otn Yewplo. XN mpd&n n anddoor elvar axdua TOLO PEYHAN.

A€Zeig xhewdidn Ahyopripol, alyopriuol Yedpwy, anddwon, tepapyies Yedpny,
OLdoTaoT YEAPOU GE XUVIALYL, DIACTIUOT] YRAPOL GE LOVOTATLY, GUVEVWOT] LOVOTIUTIY,
HETOPBaTINT) XAELOTOTNTA, CUUTIEGUEVT UETOPBoTint| ¥AeloTOTNTA, UeTaBotiny agalpeoT),
Otayelplon epWTNUATOVY, OYUA OEXTOYV, LEQUEYIXA YRUPHLATO, TERUUATIXY EpYyaola,
‘Axuxhol Ypdpot, Souéc BEBOUEVGY, avdhuaT) SIXTUWY.

Euvyapioticeg

Oa Hieha vo euyoploThiow Yepud tov xadnynth x. Torkn Iwdvvn, o omolog Htav o
EMOTTNG HOU XATO T1) OIAPXELN TWV PETATTUYLAXDY HoU 6Toud®y. ‘Hrav to dtopo mou
potpdlououy Tic oxEPElC Hou xou To EpEuvNTIXG Pou evilapépovta. Enlong Yo fieha
vor euyaploThow x. Tlovayudtn Atovdxn yio tnv e€alpetn cuvepyooio pog, Ta WEAN TN
EMTEOTNG, X TEAOC, VIOV TNV oVAYXT| VoL EUYOEIOTHOW TNV OXOYEVELY UOU YIaL TNV
oYATY, XAUTAVONOT), XAl UTOCTARIEY TOUG.

OTOUS YOVELS ov

Contents

Table of Contents
List of Tables
List of Figures

1 Introduction

1.1 On Graph Hierarchies

Path Based Framework
2.1 Introduction
2.2 Overview of the Two Frameworks
2.3 An Algorithm for Computing Compact Drawings
2.3.1 Compaction Lo
2.3.2 Drawing the Path Transitive Edges
2.4 Experimental Results and Comparisons
2.4.0.1 A Heuristic for Ordering the Paths:
2.5 Conclusions and Open Problems

Path/Chain Decomposition
3.1 Imtroduction
3.2 Path Decomposition
3.3 Chain Decomposition
3.3.1 Path Concatenation
3.3.2 Chain Decomposition Heuristic: A Better Approach
3.3.3 Experiments
3.4 Hierarchies and Transitivity
3.5 Indexing Scheme
3.5.1 The Indexing Scheme
3.5.2 Sorting Adjacency lists. L.
3.5.3 Creating the Indexing Scheme.
3.5.4 Experiments oo
3.6 Conclusions e

—_

N 3 Ot w W

Bibliography

ii

47

List of Tables

3.1

3.2

3.3

3.4
3.5

Comparing path and chain decomposition algorithms on graphs

with 5000 nodes. 26
Comparing path and chain decomposition algorithms on graphs
with 10000 nodes. 27
The tables present the run time of indexing scheme using path and
chain decomposition. oL 42
Indexing scheme analysis on graphs of 5000 nodes. 43

Indexing scheme analysis on graphs of 10000 nodes. 44

iii

v

List of Figures

2.1

2.2

2.3

24

2.5

2.6

3.1

3.2

3.3
3.4

3.5

3.6

3.7

3.8

3.9

In (a) we show the drawing I' based on G as computed by Tom
Sawyer Perspectives which follows our proposed framework. In (b)
we show the drawing of the graph G as computed by OGDF.

DAG G of Figure 2.1 drawn without its path transitive edges: (a)
drawing I'; is computed by Algorithm PBH, and it is the input of
Algorithm 1, (b) drawing I'9 is the output of Algorithm 1.
Bundling of path transitive edges: (a) incoming edges into node
13, (b) after bundling, (c¢) outgoing edges from node 16, (d) after
bundling.
Results on number of crossings, bends, width, height and area for
PBF and OGDF for all DAGs inour study.
Results on the number of bends for PBF and OGDEF for all DAGs
moour study. e
An example of a DAG with 100 nodes and 175 edges drawn with
(a) PBF, and (b) OGDF.

On the left, there is a path decomposition of graph G. On the right,
a chain decomposition of G.
The width curve on graphs of 5000 and 10000 nodes using three
different models. L
A comparison between Erdos-Renyi model and Path Based model.
The efficiency of our chain decomposition algorithm in Barabasi
Albert model.
The efficiency of our chain decomposition algorithm in Erdos Renyi

Example for the proof of Lemma 3.4.2. The blue edges are transi-
tive. (a) shows the outgoing transitive edges that end to the same
chain. (b) shows the incoming transitive edges that start from the
same chain. L L L
An example of an indexing scheme.

11

13

14

14

18

28
29

3.10 Imitialization of indexes.
3.11 Run time comparison between the Indexing Scheme (blue line) and

TC (red line) for Erdos-Renyi model on graphs of 10000 nodes. See
table 3.5.

vi

Chapter 1

Introduction

1.1 On Graph Hierarchies

The arrival of new technologies, advanced sensors, and the increasing tendency of
people to interact and use them, passively or actively, has led us to manage, ana-
lyze, and interpret an enormous amount of data. To achieve that, we develop more
efficient and faster tools and methods. Graph theory is a critical mathematical
modeling method employed in several applications of technology. In this work, we
explore graph hierarchies.

Hierarchical and often directed acyclic graphs are the de facto representation
for many applications in various domains including research and business. Such
graphs often represent hierarchical relationships between objects in a structure
or in a more complex network such as in PERT applications [21]. The analysis
and visualization of these directed (often acyclic) graphs has received significant
attention recently.

We developed a general-purpose hierarchical graph drawing framework that de-
parts from the classical four-phase framework of Sugiyama and produces readable
drawings. We call it Path-Based Framework since it is based on Path Decom-
position. In addition to [59], we draw all edges, apply edge bundling, minimize
the height using a compaction technique, and reduce the width of the drawing by
applying algorithms similar to task scheduling.

Furthermore, in this work, we developed a cutting-edge chain decomposition
technique. Several solutions that find the optimum chain decomposition have been
proposed [44, 24, 17, 14]. Finding the optimum solution is time-consuming and not
applicable for large graphs. We present a heuristic that finds a chain decomposition
close to the optimal in almost linear time. Chain decomposition has a wide area
of applications as in distributed computing [43, 70|, in bioinformatics [10, 39], in
graph visualization [59], it can facilitate answering reachability queries [44, 66, 47],
and many more. We focus on answering reachability queries. We bound the
transitive edges and propose linear time preprocessing steps that facilitate every
transitive closure algorithm. The experiments show the efficiency of our proposals.

2 CHAPTER 1. INTRODUCTION

Answering efficiently reachability queries is an important research topic mostly
driven by various arising real-world applications, such as graph databases, GIS,
web mining, social network analysis, ontologies, and bioinformatics.

Definitions and Abbreviations

e DAG: Directed acyclic graph (DAG or dag) is a directed graph with no
directed cycles.

e Path/Chain: In a path every vertex is connected by a direct edge to its
successor, while in a chain any vertex is connected to its successor by a
directed path which may be an edge. The vertices of a path/chain are in
ascending topological order.

e Paths/Chains decomposition of a DAG: Let G = (V,E) be a DAG. A
path/chain decomposition of G is a set of vertex-disjoint paths/chains. The
decomposition includes all vertices of G. There is an example of a path and
a chain decomposition in figure 3.1.

— ky: We use this abbreviation to refer to the number of paths of a path
decomposition of a graph.
— k.: We use this abbreviation to refer to the number of chains of a chain

decomposition of a graph.

e Width: The maximal number of mutually unreachable vertices of the graph
[23].

— The number of chains in a minimal chain decomposition of a graph is
equal to its width.

e Transitive edge: An edge (vi,v2) of a DAG G is transitive if there is a
path longer than one that connects v; and vs.

e DAG G(V,E): A DAG G. V represents the set of nodes and E the set of
edges.
— E}, : The set of all transitive edges. E;,. C E.
E;, : A subset of Ey,.
— Bred: Brea = E — Ey Ereqg C F.

G = (V, Eyeq) @ The transitive reduction [6] of G = (V, E). The transi-
tive reduction is unique for DAGs. It contains the minimum number of
edges needed to form the same transitive closure with G = (V, E).

e Sink vertex: A vertex with no outgoing edges.

e Source vertex: A vertex with no incoming edges.

Chapter 2

Path Based Framework

2.1 Introduction

Hierarchical graphs are very important for many applications in several areas of re-
search and business because they often represent hierarchical relationships between
objects in a structure. They are directed (often acyclic) graphs and their visual-
ization has received significant attention recently [19, 49, 56]. Sugiyama, Tagawa,
and Toda proposed a four-phase framework for producing hierarchical drawings of
directed graphs [67]. This is known in the literature as the Sugiyama framework.
Most problems involved in the optimization of various phases of the Sugiyama
framework are NP-hard. An experimental study of four algorithms specifically
designed for DAGs was presented in [20]. A new framework to visualize directed
graphs and their hierarchies which departs from the classical four-phase framework
of Sugiyama is introduced in [58, 59]. It computes readable hierarchical visualiza-
tions in two phases by hiding (abstracting) some selected edges while maintaining
the complete reachability information of a graph. In this paper we present poly-
nomial time algorithms that follow the main framework of [59]. The produced
drawings contain all edges of the input graph and attempt to optimize the height,
width and number of bends of the resulting drawing.

The Sugiyama Framework consists of four main phases [67]: (a) Cycle Removal,
(b) Layer Assignment, (c¢) Crossing Reduction, and (d) Horizontal Coordinate
Assignment. The reader can find the details of each phase and several proposed
algorithms to solve various of their problems and subproblems in [19, 49|, and
the recent Handbook [56]. The new framework of [59] departs from the typical
Sugiyama framework and it consists of two phases: (a) Cycle Removal, (b) the
path/chain decomposition and hierarchical drawing step. This framework is based
on the idea of partitioning the vertices of a graph into paths/chains, drawing the
vertices in each path vertically aligned on some x-coordinate and then drawing the
edges between vertices that belong to different paths.

The Sugiyama framework has been extensively used in practice, as manifested
by the fact that various systems are using it to implement hierarchical drawing

4 CHAPTER 2. PATH BASED FRAMEWORK

techniques. Several systems such as AGD [60], da Vinci [29], GraphViz [34],
Graphlet [41], dot [33], OGDF [18], and others implement this framework in order
to draw directed graphs. Commercial software such the Tom Sawyer Software
TS Perspectives [2] and yWorks [3] essentially use this framework in order to
offer automatic visualizations of directed graphs. The comparative study of [20]
concluded that the Sugiyama-style algorithms performed better in most of the
metrics. For more recent information regarding this framework see [56].

Even though it is very popular, the Sugiyama framework has several limi-
tations: as discussed above, most problems and subproblems that are used to
optimize the results in various steps of each phase have turned out to be NP-
hard. Additionally, several of the heuristics employed to solve these problems
give results that are not bound by any approximation. Furthermore, the required
manipulations in the graph often increase substantially its complexity, e.g., up to
O(nm) dummy vertices may be inserted in a directed graph G = (V, E) with n
vertices and m edges. The overall time complexity of this framework (depending
upon implementation) can be as high as O((nm)?), or even higher if one chooses
algorithms that require exponential time. Finally, another important limitation
of this framework is the fact that heuristic solutions and decisions that are made
during previous phases (e.g., crossing reduction) will influence severely the results
obtained in later phases. Nevertheless, previous decisions cannot be changed in
order to obtain better results.

By contrast, in the main framework of [59] most problems of the second phase
can be solved in polynomial time. If a path decomposition contains k paths, the
number of bends introduced is at most O(kn) and the required area is at most
O(kn). In order to minimize the number of crossings between cross edges and
path edges the authors suggest checking all possible k! permutations of the k
paths which may be reasonable for small values of k [58]. However, edges between
non consecutive vertices in a path, called path transitive edges are not drawn in
this framework.

In this paper we present algorithms that are based on the framework of [59]
and offer experimental results comparing them to the results obtained by running
the hierarchical drawing module of OGDF [18], which is based on the Sugiyama
framework. Since the ”cycle removal” is required in both frameworks, we focus our
experiments on the case where the input graph G is acyclic (DAG). Our algorithms
run in almost linear time, and provide better upper bounds than the ones given
in [59]: (a) the height of the resulting drawings is equal to the length of the longest
path of G, which is often significantly lower than n — 1. (b) The path transitive
edges are drawn by our algorithms in such a way that the required extra number
of columns is minimized for each path (see Section 3).

The experimental results show that the drawings produced by our algorithms
have a significantly lower number of bends and are much smaller in area than
the ones produced by OGDF (see Section 4). On the other hand, the drawings
of OGDF have a lower number of crossings when the input graphs are relatively
sparse. However, when the graphs are a bit denser (e.g., average degree higher

2.2. OVERVIEW OF THE TWO FRAMEWORKS 5

than five) our drawings have less crossings. Of course, it is expected that OGDF
would be better than our algorithms in the number of crossings since OGDF places
a significant weight in minimizing crossings, whereas we do not explicitly minimize
crossings. Thus our algorithms offer an interesting alternative to visualize hierar-
chical graphs. Finally, we present an O(m+ k log k) time algorithm that computes
a specific order of the paths that further reduces the total edge length, and number
of crossings and bends in sparse DAGs.

2.2 Overview of the Two Frameworks

In order to motivate our discussion about the two frameworks considered in this
paper we present Figure 2.1 that shows a DAG G drawn by these two frameworks:
Part (a) shows a drawing I" of G computed by our algorithms that customize the
path-based framework of [59]; it is implemented in Tom Sawyer Perspectives [2]
(a tool of Tom Sawyer Software); part (b) shows the drawing of G computed by
OGDF. The graph consists of 31 nodes and 69 edges. The drawing computed
by our algorithms has 74 crossings, 33 bends, width 14, height 16, and area 224.
On the other hand, OGDF computes a drawing that has 72 crossings, 64 bends,
width 42, height 16 and area 672. The width and height reported by OGDF are
961 and 2273, respectively. We had to normalized these figures in order to have
a reasonable comparison, as will be discussed later. As can be observed by these
two drawings, the two frameworks produce vastly different drawings with their
own advantages and disadvantages.

The Path Based Hierarchical Drawing Framework follows an approach to vi-
sualize directed acyclic graphs that hides some edges and focuses on maintaining
their reachability information [59]. This framework is based on the idea of par-
titioning the vertices of the graph G into (a minimum number of) chains/paths,
that we call chain/path decomposition of G, which can be computed in polynomial
time. Therefore, it is orthogonal to the Sugiyama framework in the sense that it
is a vertical decomposition of G into (vertical) paths/chains. Thus, most resulting
problems are vertically contained, which makes them simpler, and reduces their
time complexity. This framework does not introduce any dummy vertices and
keeps the vertices of a path wvertically aligned. By contrast, the Sugiyama frame-
work performs a horizontal decomposition of a graph, even though the final result
is a vertical (hierarchical) visualization.

Let S, = {Pi,..., Py} be a path decomposition of G such that every vertex
v € V belongs to exactly one of the paths of S,. Any path decomposition naturally
splits the edges of G into: (a) path edges that connect consecutive vertices in the
same path, (b) cross edges that connect vertices that belong to different paths, and
(¢) path transitive edges that connect non-consecutive vertices in the same path.
Given S, the main algorithm of [59], call it Algorithm PBH, draws the vertices
of each path P; vertically aligned on some z-coordinate depending on the order of
path P;. There is one column between paths that is reserved for the bends (if any)

CHAPTER 2. PATH BASED FRAMEWORK

.
L3
°
.0
9@
. o
o .,
) .
e e
— . °
. .. .
o\ & . oo
AT TN . °*
" ~ 1 [& ®
‘;=x 5 B : e ‘:,_ & . .
b) ®
(a) (b)

Figure 2.1: In (a) we show the drawing I" based on G as computed by Tom Sawyer

Perspectives which follows our proposed framework. In (b) we show the drawing
of the graph G as computed by OGDF.

2.3. AN ALGORITHM FOR COMPUTING COMPACT DRAWINGS 7

of some cross edges. Therefore, the total width of the resulting drawing is 2k — 1.
The y-coordinate of each vertex is equal to its order in any topological sorting of
G. Hence the height of the resulting drawing is n — 1. In the algorithms of [59]
path transitive edges are omitted from the final drawing.

Another advantage of the Path-Based Framework is that it works for any given
path decomposition. Therefore, it can be used in order to draw graphs with user-
defined or application-defined paths, as is the case in many applications, see for ex-
ample [21, 28]. If one desires automatically generated paths, there are several algo-
rithms that compute a path decomposition of minimum cardinality [42, 52, 57, 65].
Using a path decomposition with a small cardinality may improve the performance
of our algorithm in terms of area, bends, number of crossings and computational
time. Since certain critical paths are important for many applications, it is ex-
tremely important to produce clear drawings where all such paths are vertically
aligned. For the rest of this chapter, we will assume that a path decomposition of
G is given as part of the input to the algorithm.

OGDF is a self-contained C++ library of graph algorithms, in particular for
(but not restricted to) automatic graph drawing. The hierarchical drawing imple-
mentation of the Sugiyama framework in OGDF is implemented following [31, 64].
The Sugiyama framework in OGDF according to uses the following default choices:
For the first phase of Sugiyama, it uses the Longest Path Ranking (a ranking mod-
ule that determines the layering of the graph, i.e., the assignment of vertices into
layers) which implements the well-known longest-path ranking algorithm. Next,
it performs crossing minimization by using Barycenter Heuristic. This mod-
ule performs two-layer crossing minimization and is applied during the top-down
and bottom-up traversals [18]. The crossing minimization is repeated 15 times,
and keeps the best. Each repetition (except for the first) starts with randomly
permuted nodes on each layer. Finally it computes the final coordinates with
FastHierarchyLayout which computes the final layout of graph. The two hier-
archical drawings shown in Figure 2.1 demonstrate the significant differences in
philosophy between the two frameworks.

2.3 An Algorithm for Computing Compact Drawings

We present an extension of the framework of [59] by (a) compacting the drawing
in the vertical direction, and (b) drawing the path transitive edges that were not
drawn in [59]. This approach naturally splits the edges of G into three categories,
path edges, cross edges, and path transitive edges that are drawn differently. This
clearly adds to the understanding of the user and allows a system to show the
different categories separately without altering the user’s mental map.

2.3.1 Compaction

Let G = (V, E) be a DAG with n vertices and m edges. Following the framework
of [58, 59] the vertices of V' are placed in a unique y-coordinate, which is specified

8 CHAPTER 2. PATH BASED FRAMEWORK

by a topological sorting. Let T" be the list of vertices of V' in ascending order based
on their y-coordinates. We start from the bottom and visit each vertex in 7T in
ascending order. For every vertex v in this order we assign a new y-coordinate,
y(v), following a simple rule that compacts the height of the drawing: ”If v has
no incoming edges then we set its y(v) to 0, else we set y(v) equal to a + 1, where
a is the highest y-coordinate of the vertices that have edges incoming into v.”

Algorithm 1 takes as input a DAG G, and a path based hierarchical drawing I'y
of G computed by Algorithm PBH and it produces as output a new, compacted,
path based hierarchical drawing I'y with height L, where L is the length of a longest
path in G. Clearly this simple algorithm can be implemented in O(n + m) time.
Figure 2.2 shows an example of two hierarchical drawings of the same graph: I';
is before compaction and I'y is after compaction.

Algorithm 1 Compaction(G, T'y)

Input: A DAG G = (V,E), and a path based hierarchical drawing I'y of G
computed by Algorithm PBH

Output: A compacted path based hierarchical drawing 'y with height L, where
L is the length of a longest path in G.

1: For each v € G:

e Let E, be the set of incoming edges, e = (w, v), into v:
a. if E, = 0 then:
o y()=0
b. else:
e y(v)=max{y-coordinates of vertices w with (w,v) € E,} + 1

Notice that the first case of the if-statement, is executed only for the first
vertex (source) of some paths. Clearly, the rest of the vertices have at least one
incoming edge since they belong to some path where every vertex is connected to
its predecessor. This is the case for the "else” part. The compacted y-coordinate
for the rest of the vertices will always be equal to "max {y coordinates of adjacent
vertices to it} +1”. Based on these statements and the fact that the drawing after
compaction is also a path based hierarchical drawing, we have the next two simple
lemmas.

Lemma 2.3.1. Two vertices of the same path cannot have the same y-coordinate.

Lemma 2.3.2. For every vertex v with y(v) # 0, there is an incoming edge into
v that starts from a verter w such that y(v) = y(w) + 1.

Based on these lemmas the height of the compacted drawing of the graph G is
at most L:

Theorem 2.3.3. Let G = (V, E) be a DAG with n vertices and m edges. Algorithm
Compaction computes in O(n+m) time a hierarchical drawing 'y of G with height
L, where L is equal to the length of a longest path in G.

2.3. AN ALGORITHM FOR COMPUTING COMPACT DRAWINGS 9

o

]
‘ .
DAY

a)

Figure 2.2: DAG G of Figure 2.1 drawn without its path transitive edges: (a)
drawing I'y is computed by Algorithm PBH, and it is the input of Algorithm 1,
(b) drawing I'y is the output of Algorithm 1.

I

/

-0—0H-0——O0——80-0-6

10 CHAPTER 2. PATH BASED FRAMEWORK

Proof. 1t is clear that the height of the resulting drawing I'y cannot be lower that
L, the length of the longest path, due to Lemma 2.3.1 and the fact that all edges
go from a vertex with lower to a vertex with higher y-coordinate. Similarly, the
height of the resulting drawing I'y cannot be higher that L since that would imply
that there is a y coordinate that does not contain a vertex of a longest path. In
this case by the initial assumption and Lemma 2.3.2 there is another path that is
longer than L. Hence the height of the resulting drawing I's is equal to L. The
time complexity of Algorithm Compaction is immediate from the fact that we visit
each vertex exactly once, in the order specified by T" and consider all its incoming
edges once. O

2.3.2 Drawing the Path Transitive Edges

An important aspect of our work is the preservation of the mental map of the user
that can be expressed by the reachability information of a DAG. At this point,
we highlight that for every decomposition path, we have a set of path transitive
edges that are not drawn by the framework of [58, 59]. In this subsection we show
how to draw these edges while preserving the user’s mental map of the previous
drawing. Additionally, one may interact with the drawings by hiding the path
transitive edges at the click of a button without changing the user’s mental map
of the complete drawing.

Now we will describe an algorithm that draws the path transitive edges using
the minimum extra width (minimum extra number of columns) for each decom-
position path. The steps of the algorithm are briefly described as follows:

1. For every vertex of each decomposition path we calculate the indegree and
outdegree based only on path transitive edges, i.e., excluding path edges and
cross edges.

2. If all indegrees and outdegrees are zero the algorithm is over, if not, we
select a vertex v with the highest indegree or outdegree and we bundle all
the incoming or outgoing edges of v, respectively. These bundled edges are
represented by an interval with starting and finishing points, the lowest and
highest y-coordinates of the vertices, respectively.

3. Next, we insert each interval on the left side of the path on the first available
column such that the interval does not overlap with another interval (see
details below).

4. We remove these edges from the set of path transitive edges, update the
indegree and outdegree of the vertices and repeat the selection process.

5. The intervals of the rightmost path, are inserted on the right side of the path
in order to avoid potential crossing with cross edges.

2.4. EXPERIMENTAL RESULTS AND COMPARISONS 11

6. A final, post-processing step can be applied because some crossings between
intervals/bundled edges can be removed by changing the order of the columns
containing them.

Q
(a) (b) (c) (d)

Figure 2.3: Bundling of path transitive edges: (a) incoming edges into node 13,
(b) after bundling, (c) outgoing edges from node 16, (d) after bundling.

The above algorithm can be implemented to run in time O(m + nlogn) by
handling the updates of the indegrees and outdegrees carefully, and placing the
appropriate intervals in a (Max Heap) Priority Queue. As expected, the fact that
we draw the path transitive edges increases the number of bends, crossings, and
area, with respect to not drawing them.

For each decomposition path, suppose we have a set of b of intervals such
that each interval I has a start point, s;, and a finish point f;. The starting
point is the position of the vertex of the interval with the lowest y-coordinate.
Similarly, the finish point f; is the position of the node of the interval with the
highest y-coordinate. We follow a greedy approach in order to minimize the width
(number of columns) for placing the bundled edges. The approach is similar to
Task Scheduling [36], for placing the intervals. It uses the optimum number of
columns and runs in O(blogb) time, for each path with b intervals. This is done
by considering the intervals of each decomposition path in increasing order of their
starting points. We select each interval (resp. task) according to its starting point
and place it into the first column that can fit (i.e., does not intersect with another
interval). If there are no available columns, we allocate a new column and place
the interval there. Since the sum of all b’s for all paths in a path decomposition
is at most n we conclude that the algorithm runs in O(nlogn) time. The proof of
correctness is similar to the one for Task Scheduling in [36] and thus it is omitted
here.

Theorem 2.3.4. Let G = (V, E) be a DAG with n vertices and m edges. There is
an algorithm that computes a drawing of G bundling the path transitive edges for
each path using the minimum number of columns (width) per path. The algorithm
runs in O(m + nlogn) time and computes a compact hierarchical drawing of G.

2.4 Experimental Results and Comparisons

We performed experiments in order to compare the results produced by the two
frameworks on different DAGs with varying number of nodes and edges. We use

12 CHAPTER 2. PATH BASED FRAMEWORK

20 DAGs that were produced in a random, but controlled, fashion in order to
have small and large DAGs, but with a predefined average degree. Furthermore,
in order to evaluate the performance of the two drawing frameworks, we use the
following standard metrics:

e Number of crossings.
e Number of bends.

e Width of the drawing: The total number of distinct x coordinates that are
used by the framework.

e Height of the drawing: The total number of distinct y coordinates that are
used by the framework.

e Area of the drawing: The area of the enclosing rectangle.

Figure 2.4 shows a table that contains the results of our experiments based
on these metrics for PBF as implemented in TS Perspectives [2] compared to
the results produced by OGDF. In order to be consistent with the experimental
settings of OGDF, we used the default parameters. In the experiments that we
present in this section we see that in all cases our approach gives better results
than the ones produced by OGDF with respect to the number of bends, width,
height, and as expected the total area of the drawings. For the number of bends we
observe that our proposed technique produces bends that are a small fraction of n,
whereas OGDF produces bends that are proportional to m. The bar charts shown
in Figure 2.5 show how the number of bends grows as the DAGs grow in size and
average degree and provide a clear evidence that the number of bends for PBF
is significantly lower than OGDF in all cases. On the other hand, the drawings
of OGDF have a lower number of crossings when the input graphs are relatively
sparse. However, when the graphs are a bit denser (e.g., average degree higher
than five) our drawings start having less crossings. Since the two frameworks use
a different coordinate system, for a fair comparison between them we chose to count
as height of a drawing the number of different layers (or different y-coordinates)
and as width the number of different z-coordinates of nodes and bends, used by
each system. In other words, we normalize the two coordinate systems by mapping
them on a ”grid.”

In general, our experiments show that PBF produces readable drawings with
very good results almost in all metrics, except for the number of crossings. Addi-
tionally, it clearly partitions the edges into three distinct categories, and vertically
aligns certain paths, which can be user defined. This can be a great advantage
in certain applications and therefore it seems to be an interesting alternative, as
also shown in Figure 6 for a larger example. PBF' does not perform any crossing
reduction step, in contrast to OGDF which offers crossing minimization algorithms
by default (also required by the Sugiyama framework), which are run several times
in order to keep the best result.

2.4. EXPERIMENTAL RESULTS AND COMPARISONS

13

m=62 m=87 m=150 m=250 m=500
n=50 PBF OGDF PEF OGDF PEF OGDF PEF OGDF PEF OGDF
Crossings 17 & 126 92 839 703 2469 2585 | 8061 14479
Bends 15 25 22 69 54 188 91 380 176 863
Width 12 36 13 59 18 116 24 206 33 442
Height 13 16 17 21 20 23 21 28 24 33
Area 156 576 221 1239 360 2668 504 5768 792 14586
m=125 m=175 m=300 m=500 m=1000
n=100 PBF QGDF PBF OGDF PEF OGDF PEF OGDF PEF OGDF
Crossings 105 29 705 430 3749 3366 13068 12890 | 42934 62695
Bends 29 50 59 143 108 388 194 757 324 1737
Width 18 60 20 103 26 230 36 414 51 912
Height 22 27 22 32 26 30 27 28 38 45
Area 396 1620 440 3296 676 6900 972 11592 | 1938 41040
m=250 m=350 m=600 m=1000 m=2000
n=200 PBF OGDF PBF OGDF PBF QGDF PBF OGDF PBF OGDF
Crossings 594 278 3094 1929 | 16357 124590 | 52095 49278 | 209446 266260
Bends 48 100 128 288 226 763 350 1519 c97 3498
Width 23 107 32 216 37 450 52 830 83 1813
Height 27 46 33 48 39 40 38 42 49 60
Area 621 4922 1056 10368 | 1443 18000 | 1976 34860 | 4067 108780
m=625 m=875 _ m=1500 _ £n=2500 _ m=5000
n=500 PBF OGDF | PBF OGDF | PBF OGDF | PBF OGDF PBF OGDF
Crossings 2746 1501 | 15474 11221 | 102195 81537 | 389241 327017 | 1486777 1636057
Bends 123 246 280 730 544 1916 911 3909 1482 8e02
Width 41 260 51 531 71 1142 96 2103 138 4565
Height 42 78 39 71 50 57 64 74 79 90
Area 1722 20280 | 1989 37701 | 3550 65094 | 6144 155622 | 10902 410850

Figure 2.4: Results on number of crossings, bends, width, height and area for PBF
and OGDF for all DAGs in our study.

14 CHAPTER 2. PATH BASED FRAMEWORK

PBF vs OGDF

1519 3909 3498 8802
9000 730 763 1916 757 911 863 1737 1482
500
500
w400
8
2
5
&
300
200
100 I
o 125 175 3 B 10
Avg Degree
M 50nPBF M 50nOGDF [100nPBF [100nOGDF |l 200nPEF [l 200nOGDF 500nPBF M 500nOGDF

Figure 2.5: Results on the number of bends for PBF and OGDF for all DAGs in
our study.

(b)

Figure 2.6: An example of a DAG with 100 nodes and 175 edges drawn with (a)
PBF, and (b) OGDF.

2.5. CONCLUSIONS AND OPEN PROBLEMS 15

2.4.0.1 A Heuristic for Ordering the Paths:

As described in [58], one way to minimize the number of crossings between cross
edges and path edges (and path transitive edges, now) is to check all possible k!
permutations of the k paths. In order to reduce the number of crossings between
the cross edges and path (transitive) edges, we implemented a heuristic that aims
to reduce the number of paths crossed by cross edges. Our fast and simple approach
is described below.

We create an undirected path graph by placing a node for each path P. For any
pair of paths P; and P> we find the total number of cross edges between them, c,
and we insert an (undirected) edge between the nodes corresponding to paths P;
and P, with weight equal to c¢. Hence, the weight, ¢, of edge (Py, P») is the sum of
the number of cross edges directed from P; to P, plus the number of cross edges
from P, to P;. We do this for all cross edges between all paths. Next, we order the
paths following a greedy process: We find the maximum-weight edge and we place
the corresponding paths next to each other. We remove the edge from the path
graph and continue with this process until it contains no edges. If we select an edge
such that both paths are already placed, we simply delete this edge and proceed. If
we select an edge such that one of the two paths is not already placed, then we place
it at the rightmost (or leftmost) side of the placed path, depending upon which side
has the least number of paths placed. This algorithm uses data structures similar
to Kruskal’s [51] algorithm for computing a minimum (maximum) spanning tree
and it can be implemented in O(m + klogk) time. We performed some limited
experiments on sparse graphs (with average degree 1.25, 1.75, and 3) using this
path ordering algorithm, and we found out that the produced drawings have lower
number of crossings, bends, and edge length. Unfortunately, for denser graphs the
results are inconclusive.

2.5 Conclusions and Open Problems

We present algorithms and experimental results comparing two hierarchical draw-
ing frameworks: (a) the path-based framework and (b) OGDF, which is based
on the Sugiyama technique. Our compaction algorithm runs in linear time, and
produces drawings with height equal to the length of a longest path of G instead
of n — 1 which is the height of drawings produced in [59]. In this implementa-
tion we present an algorithm to bundle and draw the path transitive edges of G
in O(m + nlogn) time, which is an extension of the original path based frame-
work [59]. The experimental results show that the drawings produced by our
algorithms have significantly lower number of bends and are much smaller in area
than the ones produced by OGDF, but they have more crossings for sparse graphs.
Thus our algorithms offer an interesting alternative when we visualize hierarchical
graphs. They focus on showing important aspects of the graph such as critical
paths, path transitive edges, and cross edges. For this reason, this framework is
particularly useful in graph visualization systems that encourage user interaction.

16 CHAPTER 2. PATH BASED FRAMEWORK

There are several interesting open problems: 1) Find better algorithms to order
the paths. 2) Find techniques to reduce the number of crossings. 3) Allow some
extra vertical space between selected vertices in order to make the visualization

more visually appealing.

Chapter 3

Path/Chain Decomposition

3.1 Introduction

Searching for efficient ways to decompose the graph into chains, we could not find
an efficient solution that scales on large graphs. An efficient chain decomposition
has many applications and can facilitate many algorithms and systems. In this
work, we develop an almost linear chain decomposition algorithm that produces
a set of chains with almost minimum cardinality. We use the notion of chain
decomposition to offer bounds to the transitive edges and explore how it facilitates
in transitive closure problem.

In Section 3.2, we present path decomposition approaches, and in Section 3.3
we present chain decomposition and path concatenation. Additionally, we show
experiments and evaluate the performance of our heuristic. Furthermore, we ex-
amine a few outcomes. In section 3.4, we prove that |E,.q| < width % |V|, and see
how we can in linear time, remove a subset of transitive edges and bound |E — E}, |
by k * |V| given a path/chain decomposition of size k. Finally, section 3.5 demon-
strates how to build a known indexing scheme for computing transitive closure of
a graph and we report experimental results.

We conducted all the experiments using a laptop PC (Intel(R) Core(TM) i5-
6200U CPU, 8 GB of main memory).

3.2 Path Decomposition

Jagadish in [44] categorized path decomposition techniques into two categories.
Chain Order Heuristics and Node Order Heuristics. The first constructs the paths
one by one, while the second creates the paths in parallel. More precisely, in
[44], Jagadish presented chain decomposition heuristics based on Chain Order
Heuristic and Node Order Heuristic. He utilized a list of all successors and not
only the immediate for each vertex. However, his algorithms require O(n?) time
using the precomputed transitive closure. That is inefficient, especially for large
graphs, and we will not examine them further. Our heuristic does not need any

17

18 CHAPTER 3. PATH/CHAIN DECOMPOSITION

Path4
5]
Path 3

N
o/ ©

(a) A path decomposition
of a graph. It consists of 4
paths.

o/Bl\o
(b) A chain decomposition

of the same graph. It con-
sists of 2 chains.

Figure 3.1: On the left, there is a path decomposition of graph G. On the right, a

chain decomposition of G.

3.2. PATH DECOMPOSITION 19

precomputation of the transitive closure and decomposes the graph into a number
k. of chains in O(|E| + ¢ *[) time which in practice is almost linear. Factor c is
the number of concatenations, and [is the length of a longest path of the graph.
We will describe our technique in detail in the next section.

In this section, we describe the linear time algorithms for path decomposition.
We use topological sorting and examine the vertices in ascending order.

Chain Order Heuristic

The chain-order heuristic starts from a vertex and keeps on extending the path to
the extent possible. The path ends when no more unused immediate successors
can be found. As you can see in Algorithm 2, the first for loop finds an unused
vertex and creates a path. The inner while loop extends the path.

Algorithm 2 Path Decomposition (CO)

procedure CHAINORDERHEURISTIC(G, T))
INPUT: A DAG G = (V, E), and a topological sorting T'(vy, ..., v;, ..., vn) of
G
OUTPUT: A path decomposition of G
K<+ //Set of paths
Mark all nodes unused
for every unused vertex v; € T in ascending topological order do
current < v;
C < new Chain()
Add current to C
while there is an unused immediate successor s of the current node

do
add s to C
current <— s
end while
add C to K
end for
end procedure

Node Order Heuristic

The node-order heuristic examines each node and assigns it to an existing path.
If there is no matching, then a new path is created for the vertex. Algorithm 3
illustrates the node order heuristic.

20 CHAPTER 3. PATH/CHAIN DECOMPOSITION

Algorithm 3 Path Decomposition (NO)

procedure NODEORDERHEURISTIC(G, T))
INPUT: A DAG G = (V, E), and a topological sorting T'(v1, ..., v;, ...,vx) of G
OUTPUT: A path decomposition of G
K<+ //Set of paths
for every vertex v; € T in ascending topological order do
if v; is an immediate successor of the last node of a chain C then
add v; to C'
else
C <+ new Chain()
add v; to C
add C to K
end if
end for
end procedure

3.3 Chain Decomposition

In this section, we present a path concatenation technique that takes as input any
path decomposition and constructs a chain decomposition in O(|E| + ¢ x 1) time,
where ¢ is the number of path concatenations and [is the longest path of the
graph. In order to apply our path concatenation algorithm, we first find a path
decomposition of the graph. We can use an already known linear-time algorithm
based on Node-Order Heuristic or Chain Order Heuristic.

3.3.1 Path Concatenation

Our concatenation algorithm can work for any path decomposition. Given a graph
G = (V, E) and its path decomposition D,, with k, paths we build a chain decom-
position of k. chains in O(|E| + (k, — k) * [) time, where [is the longest path of
G'. Since each concatenation reduces the number of chains by one, factor (k, — k)
is the number of path concatenations.

For every path, we start a reverse DFS lookup function from the first vertex
of the chain, looking for the last vertex of another chain traversing the edges
backward. The DFS lookup function is the well-known depth-first search graph
traversal for path finding. If the DFS lookup function detects the last vertex of
a chain, then it concatenates the chains. If we do merely that the algorithm will
run in O(ky * |E|) since we run k, DFS functions. In our case, every DFS lookup
function will take advantage of the previous DFS lookup functions’ executions.
DFS for path finding returns the path between the source vertex and the target
vertex. In our case, the path between the first vertex of a chain and the last vertex
of another chain. Hence, every execution goes through a set of vertices V; that can
be split into two vertex disjoint sets, R; and P;. In P; belong the vertices of the

3.3. CHAIN DECOMPOSITION 21

path from the source vertex to the destination vertex. In R; belong every vertex
in V; — P;. If no path is found then V; = R; and P, = (.

Notice that every vertex in the set R; is not the last vertex of a chain. If it
was then it would belong to P; and not to R;. The same way, for every vertex in
R;, all its predecessors are in R; too. Hence, if a forthcoming reverse DFS lookup
function meets a vertex of R;, there is no reason to proceed with its predecessors.
All the above are basic DFS theory.

Algorithm 4 Concatenation

procedure CONCATENATION(G, D)
INPUT: A DAG G = (V, E), and a path decomposition D of G
OUTPUT: A chain decomposition of G
for each path: p, € D do
fi + first vertex of p;
(R;, P;) < reverse_DFS_lookup(G, f;)
if P, # () then
l; < destination vertex of P; //Last vertex of a path
Merge_Paths(l;, f;)
end if
end for
end procedure

Algorithm 4 shows our chain concatenation technique. As you see, the DFS
lookup function is invoked for every starting vertex of a path. Every reverse DFS
lookup function goes through the set R; and the set P;, examining the nodes and
their incident edges. P; is the path from the first vertex of a chain to the last vertex
of another. The set R; contains all of the vertices the function went through except
the vertices of P,.

Theorem 3.3.1. The time complexity of Algorithm 4 is O(|E| + (kp — kc) * 1).

Proof. Assume that we have k, paths. We call k, times the reverse_DFS_lookup
function. Hence, we have (R;, P;) sets, 0 < i < kp. In every loop, we delete the
vertices of R;. Hence, RN R; =0 ,0 <1i,j < kp and ¢ # j. We conclude that
kp—1
Ri € N and 75" |Ri| < |N.

i=0

Path P;, 0 < i < kp, is not empty if and only if concatenation has occurred.
Hence, Zfﬁ 51 |Pi| < ¢« 1 where c is the number of concatenations and 1 is the
longest path of the graph. Since every concatenation reduces the number of chains

by one, we have ¢ = k, — k.. O

22 CHAPTER 3. PATH/CHAIN DECOMPOSITION

3.3.2 Chain Decomposition Heuristic: A Better Approach

Previously, we described how to produce a chain decomposition applying a con-
catenation step after path decomposition. At this point, we will demonstrate an
approach which not only runs in O(|E| + ¢ x 1) time but it also finds a close to
optimal chain decomposition.

We present Algorithm 5, which is a variation of Node Order Heuristic (Algo-
rithm 3). It is like the Node Order heuristic but with two additions. The first
is that when we visit a vertex with out-degree 1, we add its unique immediate
successor to its path. The second is that we do not merely search for the first
available immediate predecessor that is the last vertex of a path. Instead of the
first available vertex, we choose an available vertex with the highest out-degree.
Our aim using this heuristic is to create a chain construction in which more con-
catenations will occur. Algorithm 4 goes through all vertices. For every vertex, it
examines all the outgoing (line 8) and all the incoming edges (line 19). Hence, the
time complexity is linear.

Algorithm 6 illustrates our chain decomposition which is a combination of
Algorithm 5 with chain concatenation. The only addition to Algorithm 4 is the if-
statement of line 10 and its block. If we do not find an immediate predecessor, we
search all predecessors using the reverse_DFS_lookup function. The differentiation
of our concatenation is that it does not take part as a post-processing step. It is
applied on time when the algorithm does not find an immediate predecessor that
is the last vertex of a chain. We do it to avoid transitive edges that could lead to
false matches.

3.3.3 Experiments

In this section, we present experiments on graphs created by NetworkX [40]. We
used three different random graph generator models. Erdos-Renyi, Barabasi, and
Watts-Strogatz model. Additionally, we use Path-Based DAG Model. For every
model, we created 12 graphs. Six of 5000 nodes and six graphs of 10000 nodes and
average degree 5,10,20,40,80, and 160. We examine the performance of heuristics
in terms of the chains’ number. We compute the minimum set of chains by us-
ing the Fulkerson’s method [24]. Our aim is to reveal the behavior of the width
and the behavior of heuristics used on graphs of these models. We noticed that
the graphs generated by the same generator with the same parameters have in-
significant width deviation (In three graphs created with the same parameters,
the percentage of deviation on Erdos-Renyi and Path-Based model is about 5%
and Barabasi model 10%. The Watts-Strogatz model deviation is higher, but that
happens because the width has low values).

Fulkerson’s method:

1. Construct transitive closure G*(V, E’) of the graph, where V = {v1, ..., v, }.

3.3. CHAIN DECOMPOSITION 23

Algorithm 5 Path Decomposition (H3)

1: procedure NODE-ORDER BASED VARIATION(G,T)

T R R S R N i e e
e e A

22:

INPUT: A DAG G = (V, E), and a topological sorting T'(vy, ..., v;, ..., vn) of

OUTPUT: A path decomposition of G
K<+ //Set of paths
for every vertex v; € T' in ascending topological order do

Chain C
if w; is assigned to a chain then
C < u;’s chain
else if v; is not assigned to a chain then
[; < choose the immediate predecessor with the lowest outdegree
that is the last vertex of a chain
if [; # null then
C + path indicated by I;
add v; to C
else
C < new Chain()
add v; to C'
end if
add C' to K
end if
if there is an immediate successor s; of u; with in-degree 1 then
add s; to C
end if

end for

23: end procedure

. Construct a bipartite graph B with bipartite (V1, V3), where V1 = {x1, x9, ..., x, },
V2 ={y1,Y2, .., Yn}. An edge (z;,y;) is formed whenever (v;,v;) € E’

. Find a maximal matching M of B. The width of the graph is n — |M|. In
order to construct the minimum set of chains, for any two edges ej,eq € M,
if e1 = (@i, y¢) and ey = (24, y;) then connect e; to ey

Random Graph Generators:

e Erdds-Rényi model [27]: The generator returns a binomial graph. The
generator’s parameters are two, the number of nodes n and a probability p.
Every edge in this model has a probability p to be formed.

e Barabasi—Albert [9]: A graph of n nodes is grown by attaching new nodes
each with m edges that are preferentially attached to existing nodes with
high degree. The factors n and m are parameters to the algorithm.

24

CHAPTER 3. PATH/CHAIN DECOMPOSITION

Algorithm 6 Chain Decomposition (H3 conc.)

1: procedure NODEORDER BASED VARIATION WITH CONCATENATION(G,T)

NN NN NN NN R = ks e e e e

29:

INPUT: A DAG G = (V, E), and a topological sorting T'(vy, ..., v;, ..., vn) of

OUTPUT: A path decomposition of G
K<+ //Set of paths
for every vertex v; € T' in ascending topological order do

Chain C
if w; is assigned to a chain then
C < u;’s chain
else if v; is not assigned to a chain then
l; < choose the immediate predecessor with the lowest outdegree
that is the last vertex of a chain
if [; = null then
(R;, P;) < reverse_DFS_lookup(G, u;)
if P; # () then
l; < destination vertex of P;
end if
end if
if I; # null then
C <+ path indicated by [;
add v; to C'
else
C <+ new Chain()
add v; to C'
end if
add C to K
end if
if there is an immediate successor s; of u; with in-degree 1 then
add s; to C
end if

end for

30: end procedure

e Watts—Strogatz [76]: This model returns a Watts-Strogatz small-world
graph. First it creates a ring over n nodes. Then each node in the ring is
joined to its k nearest neighbors. Then shortcuts are created by replacing
some edges as follows: for each edge (u,v) in the underlying “n-ring with k
nearest neighbors” with probability b replace it with a new edge (u,w) with
uniformly random choice of existing node w. The factors n,k, and b are the
generator’s parameters.

3.3. CHAIN DECOMPOSITION 25

e Path-Based DAG Model [55]: In this model, graphs are randomly gener-
ated based on a number of predefined but randomly created paths.

To make the directed graphs acyclic, only edges from low to high ID are inserted.
For more info about the generators see networkx documentation [40].

Table 3.1 shows the width and the number of chains created by the heuristics
for every graph of 5000 nodes. Table 3.2 shows the same for graphs of 10000 nodes.
The tables’ abbreviations are explained below:

e CO: Path decomposition using Chain Order Heuristic. (Algorithm 2)

e CO conc.: Chain decomposition using Chain Order Heuristic and our con-
catenation technique. (Algorithm 2 followed by Algorithm 4)

e NO: Path decomposition using Node Order Heuristic. (Algorithm 3)

e NO conc.: Chain decomposition using Node Order Heuristic and our con-
catenation technique. (Algorithm 3 followed by Algorithm 4)

e H3: Path decomposition using our Node Order Heuristic variation from
section 3.3.2. (Algorithm 5)

e H3 conc.: Chain decomposition using our technique from section (Algo-
rithm 6)

e Width: The width of the graph (Fulkerson’s method).

As we see, in both tables our chain decomposition (H3 conc.) performs better
than the others since it produces fewer chains. To visualize how close is the
outcome of our heuristic to the width, we made some charts. In Figures 3.4, 3.5,
and 3.6, you can see how close is the blue line to the red one for Erdos Renyi,
Barabsi Albert, and Watts Strogatz model. The red line indicates the width and
the blue the chains produced by our technique.

Furthermore, we explore the behavior of the width on these models. Notice
that the Barabasi Albert model produces graphs with a larger width than Erdos-
Renyi. Respectively, the Erdos-Renyi model creates graphs with a larger width
than Watts-Strogatz. For the Watts Strogatz model, we create two sets of graphs.
The first has probability b equals 0.9 and the second 0.3. If the probability b of
rewiring an edge is 0, the width would be one. That happens because the generator
initially creates a path that goes through all vertices. As probability b grows, the
width grows. That’s the reason we choose a low and a high probability. Figure
3.2a and 3.2b demonstrates the behavior of the width for each model on the graphs

of 5000 and 10000 nodes. Another interesting observation is that the width of the
nodes

average degree °

All heuristics run in few milliseconds thus we do not elaborate on running time.

In the following sections, we present partially run-time metrics in tables 3.4,3.5,
and 3.3.

Erdos Renyi model follows the curve width =

26 CHAPTER 3. PATH/CHAIN DECOMPOSITION

|V|=5000
Av. Degree 5 10 20 40 80 160
Barabasi Albert
co 1722 1178 801 471 296 189
CO conc. 1686 1127 747 411 252 164
NO 1792 1250 827 516 306 193
NO conc. 1743 1174 774 445 284 187
H3 1658 1102 720 424 256 165
H3 conc. 1630 1055 664 355 207 163
Width 1593 1018 623 320 187 163
Erdos Renyi
Cco 1138 710 433 260 148 79
CO conc. 1027 593 356 217 125 69
NO 1184 744 461 263 157 83
NO conc. 1105 686 429 257 153 83
H3 1050 654 401 235 143 80
H3 conc. 923 492 252 139 70 38
Width 785 403 217 110 56 33
Watts-Strogatz, b=0.9
co 948 514 279 161 87 57
CO conc. 794 376 202 107 69 47
NO 995 540 272 126 60 40
NO conc. 865 441 244 119 59 40
H3 891 473 264 145 81 58
H3 conc. 687 212 60 25 20 17
Width 560 187 54 22 17 15
Watts-Strogatz, b=0.3
co 399 240 130 62 39 23
CO conc. 90 57 32 20 12 10
NO 275 88 23 6 7 6
NO conc. 85 40 17 6 7 6
H3 283 162 85 50 28 12
H3 conc. 9 4 4 5 4
Width 9 4 4 4 4 4
Path-Based DAG Model, Paths=70
co 159 236 295 289 203 130
CO conc. 114 155 193 207 155 109
NO 210 295 328 268 197 125
NO conc. 148 215 260 242 192 124
H3 115 210 257 241 190 120
H3 conc. 86 101 107 93 73 51
Width 70 70 70 68 58 30

Table 3.1: Comparing path and chain decomposition algorithms on graphs with
5000 nodes.

3.3. CHAIN DECOMPOSITION
|V|=10000
Av. Degree 5 10 20 40 80 160
Barabasi Albert
co 3501 2401 1537 985 586 357
CO conc. 3441 2301 1415 865 500 294
NO 3635 2519 1645 1033 625 387
NO conc. 3549 2413 1515 959 563 345
H3 3385 2257 1411 911 535 321
H3 conc. 3341 2159 1264 752 400 228
Width 3282 2066 1172 678 351 198
Erdos Renyi
Cco 2283 1432 871 513 294 165
CO conc. 2015 1213 730 428 251 145
NO 2369 1517 891 531 294 165
NO conc. 2172 1383 833 507 290 163
H3 2135 1325 804 482 272 166
H3 conc. 1837 1003 516 271 139 72
Width 1561 802 409 219 110 58
Watts-Strogatz, b=0.9
co 1869 1064 566 306 170 92
CO conc. 1575 771 381 218 119 72
NO 1975 1083 528 238 101 56
NO conc. 1717 894 455 218 92 56
H3 1748 975 524 269 150 95
H3 conc. 1332 447 100 29 24 22
Width 1101 378 93 27 20 18
Watts-Strogatz, b=0.3
co 816 434 242 133 78 37
CO conc. 184 122 57 38 24 17
NO 565 171 37 10 7 7
NO conc. 165 72 24 9 7 7
H3 534 299 180 96 34 34
H3 conc. 12 4 4 4 4
Width 12 4 4 4 4
Path-Based DAG Model, Paths=100
co 234 389 507 482 371 250
CO conc. 161 254 304 323 281 207
NO 305 504 550 512 370 238
NO conc. 205 343 440 448 343 227
H3 168 316 443 427 337 232
H3 conc. 125 141 153 142 120 89
Width 100 100 100 99 90 47

27

Table 3.2: Comparing path and chain decomposition algorithms on graphs with

10000 nodes.

28 CHAPTER 3. PATH/CHAIN DECOMPOSITION

|V | =5000,Width

1.600
1.500
1.400
1.300
1.200
1.100
1.000

900

300 \

700

600

500

400

300

200

o —

Channels

100

0 10 20 230 40 50 60 70 80 90 100 110 120 130 140 150 160
b

|— Barabasi Albert — Erdos Renyi Watts Strogatz 0.9 Watts Strogatz 0.3|

(a) The width curve on graphs of 5000 nodes.
| V] =10000,Width

3.400
3,200
3.000
2,800
2,600
2,400
2,200
2,000
1.800
1.600
1.400
1.200
1.000

800

600

400

200

Channels

0 10 20 30 40 50 &0 70 B0 90 100 110 120 130 140 150 160
Av. degree

|— Barabasi Albert — Erdos Renyi Watts Strogatz 0.9 Watts Strogatz 0.3|

(b) The width curve on graphs of 10000 nodes.

Figure 3.2: The width curve on graphs of 5000 and 10000 nodes using three dif-
ferent models.

3.3. CHAIN DECOMPOSITION

Channels

| V| =10000, Path Based Generator Paths=100, Erdos Renyi

1.600
1.500
1.400
1.300
1.200
1.100
1.000
900
BOO
700
600
500
400
300
200
100

Figure 3.3

Channels

3.400
3.200
3.000
2,800
2,600
2,400
2,200
2.000
1.800
1.600
1.400
1.200
1.000

800

600

400

200

0 10 20 30 40 50 &0 7O 80 90
Av, degree

100 110 120 130 140 150 160

|— PB width — Erdos Renyi Width]

29

: A comparison between Erdos-Renyi model and Path Based model.

| V]| =10000, Barabasi Albert

0 10 20 30 40 550 &0 70 80 90
Av, degree

— H3_conc — Width

100 110 120 130 140 150 160

Figure 3.4: The efficiency of our chain decomposition algorithm in Barabasi Albert

model.

30

Channels

1.900
1.800
1,700
1.600
1.500
1.400
1.300
1.200
1,100
1.000
900
B0OO
700
600
500
400
300
200
100

CHAPTER 3. PATH/CHAIN DECOMPOSITION

| V] =10000, Erdos Renyi

10 20 30 40 50 60 7O 80 90 100 110 120 130 140 150 160
Av, degree

— H3_conc — Width

Figure 3.5: The efficiency of our chain decomposition algorithm in Erdos Renyi

model.

3.3. CHAIN DECOMPOSITION 31

|V|=10000,Watts Strogatz, b=0.9

1.200
1.200
1.100
1.000
900
200
700

Channels

600
500
400
300
200
100

0 10 20 30 40 50 &0 7O 80 90 100 110 120 130 140 150 180
Av, degree

— H3_conc — Width

Figure 3.6: The efficiency of our chain decomposition algorithm in Watts-Strogatz
model.

32

Channels

160
150
140
130
120
110
100
20
B0
70
60
50
40
30
20
10

CHAPTER 3. PATH/CHAIN DECOMPOSITION

| V| =10000, Path Based Generator, Paths=100

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
Av. degree

— H3_conc — Width

Figure 3.7: The efficiency of our chain decomposition algorithm in Path Based

model.

3.4. HIERARCHIES AND TRANSITIVITY 33

3.4 Hierarchies and Transitivity

Lemma 3.4.1. Given a chain decomposition D of a DAG G = (V, E), each vertex
v; €V, 0<1i<|V], can have at most one outgoing non-transitive edge per chain.

Proof. Given a graph G(V,E), a decomposition D(Cy,Cy,...,Cf.) of G, and a
vertex v € V, assume vertex v has two outgoing edges, (v,t1) and (v, t2), and both
t; and t9 are in chain C;. The vertices are in ascending topological order in the
chain by definition. Assume t; has a lower topological rank than t2. Thus, there
is a path from t; to £9, and accordingly a path from v to t9 through ¢;. Hence, the
edge (v,t2) is transitive. See Figure 3.8a. O

Lemma 3.4.2. Given a chain decomposition D of a DAG G = (V, E), each vertex
v; € V,0<1i<|V|, can have at most one incoming non-transitive edge per chain.

Proof. Similar to the proof of proposition 3.4.1. See figure 3.8b. O

channel channel

(a) (b)
Figure 3.8: Example for the proof of Lemma 3.4.2. The blue edges are transitive.

(a) shows the outgoing transitive edges that end to the same chain. (b) shows the
incoming transitive edges that start from the same chain.

Theorem 3.4.3. Let G = (V,E) be a DAG with width w. The non-transitive
edges of G are less than or equal to width x |V|, in other words E..q = E — Ey <
width * |V |.

34 CHAPTER 3. PATH/CHAIN DECOMPOSITION

Proof. Given any DAG G and its width w, there is a chain decomposition of G
with w number of chains. From Lemma 3.4.1, every vertex of G could have only
one outgoing, non-transitive edge per chain, thus its non-transitive outgoing edges
cannot be more than w *|V|. Notice that the same stands for the incoming edges,
according to Lemma 3.4.2. O

According to Theorem 3.4.3, the time complexity of Algorithm 6 can be ex-
pressed as O(kex |Epeq|) = O(kexwidth*|V|) since |Eyeq| < width*|V|. Addition-
ally, the chains rarely have the same length. Usually, the decomposition consists
of a few long chains and several shorter chains. Hence, for most of the graphs it
is not even possible |E,cq| = width % |V|, |E,eq| it usually is much less than that.
We present experimental results that confirm this in table 3.4 and 3.5.

Also, an essential application of Lemma 3.4.1 and 3.4.2 is that we can find a
subset of 4, in linear time. Given a chain decomposition or a path decomposition
with k. chains, we can trace the vertices and their outgoing edges and keep the
edges that point to the lowest point of each chain, rejecting the rest as transitive.
We do the same for the incoming edges keeping the edges that come from the
highest point (vertex with highest topological rank) of each chain. This way, we
find a subset F}, C Ey,.. Hence, |E—FEj,.| < k.*|V|. This linear time preprocessing
can facilitate every transitive closure technique bounding the input graph edges,
and the indegree and outdegree of every vertex by k.. For example, algorithms
based on tree cover, see [5, 15, 71, 75], are practical on sparse graphs and can be
enhanced further with a preprocessing step that removes transitive edges.

3.5 Indexing Scheme

In this section, we present an important application of our chain decomposition
technique. We solve the transitive closure problem by creating an indexing scheme
that is based on chain decomposition.

Jagadish described a compressed transitive closure technique in 1990 [44] ap-
plying the indexing scheme and path/chain decomposition. As we discussed, Ja-
gadish’s heuristic for chain decomposition runs in O(n?) using the pre-computed
transitive closure. Our technique outperforms that. It runs in almost linear time
without using a pre-computed transitive closure, and the outcome is close to the
optimal. Furthermore, his method focuses on compression and does not answer
queries in constant time.

Simon, see [66], describes that indexing scheme too. He calculates a path
decomposition, boosting the method presented in [38]. The linear time heuristic he
presented is Chain Order Heuristic. In the following sections, we show that using
our channel decomposition technique outperforms finding the indexing scheme
using merely a path decomposition.

We build our solution in O(k. x |E,¢q|) time, where using our solution, we can
answer queries in constant time. k. is the number of chains and | E,..4| is the number
of non-transitive edges. Additionally, we will show that |E,.q| < width x |V|. The

3.5. INDEXING SCHEME 35

space complexity of our algorithm is O(k.*|V|). Furthermore, we present extensive
experimental work, and we show both in theory and practice the efficiency of our
approach.

By finding the strongly connected components, we can make any directed graph
acyclic. All vertices of a SCC will form a supernode since any vertex is reachable
from any other vertex in the same component. This is a well-known step, so we
assume that the input of our method is a DAG. The steps given a DAG are:

1. Perform Chain decomposition
2. Sort Adjacency lists
3. Create Indexing Scheme

In step 1, we use our chain decomposition technique that runs in O(|E| + ¢ % 1).
In step 2, we sort the adjacency lists in O(|V| + |E|) time. Finally, we create the
indexing scheme in O(k¢*|E,eq|) time and O(k.*|V|) space. If we had done merely
path decomposition, the time complexity would be O(ky, * |E,cq|) and O(k, * |V])
space. Probably, you have already noticed the relation between step 1 and step 3.
The fewer chains the first step gives, the more efficient becomes the third.

3.5.1 The Indexing Scheme

Assume there is a chain decomposition of a DAG G with size k.. Its indexing
scheme includes a pair and an array of indexes of size k. for every vertex. See
for example Figure 3.9. The first integer of the pair indicates the node’s chain
and the second its position in the chain. For example, vertex 1 of Figure 3.9 has
(1,1). The node belongs to the 1st chain, and it is the 1st element in it. Given
a chain decomposition, we can easily construct the pairs in O(|V]) time with a
traversal of the chains. Every cell of the k. size array represents a chain. The i-th
cell represents the i-th chain. The entry in the i-th cell corresponds to the lowest
point of the i-th chain the vertex can reach. For example, the array of vertex 1 is
[1,3,2]. The first cell of the array indicates that vertex 1 can reach the 1st vertex
of the first chain (can reach itself, reflexive property). The second cell of the array
indicates that vertex 1 can reach the 3nd vertex of the second chain (There is a
path from vertex 1 to vertex 7). Finally, the third cell of the array indicates that
vertex 1 can reach the 2rd vertex of the third chain.

Notice that we do not need the second integer of any pair. If we know the
chain a vertex belongs in, we can conclude its position using the array. We present
it like that to make it easier to understand.

The process of answering a reachability query is simple. Assume, there is a
vertex s and a target vertex t. To find if the vertex t is reachable from the s, we
get t’s chain, and we use it as an index in s’s array. Hence, we know the lowest
point of t’s chain vertex s can reach. s can reach t if that point is less than or
equal to t’s position, else it cannot.

36

CHAPTER 3. PATH/CHAIN DECOMPOSITION

Chain 1 (2,1) Chain 2 (3,1) Chain 3

Figure 3.9: An example of an indexing scheme.

3.5. INDEXING SCHEME 37

3.5.2 Sorting Adjacency lists

Algorithm 7 sorts the adjacency list of every vertex. More precisely, it sorts the
adjacency lists of immediate successors in ascending topological order in linear
time. The variable stack indicates the sorted adjacency list. The algorithm tra-
verses the vertices in reverse topological order (vy,...,v1). For every vertex v;,
1 < i < n, it pushes v; in the stacks of all immediate predecessors. This step
could be performed even before the chain decomposition as a preprocessing step.
We present it in this section to emphasize its crucial role in the indexing scheme
creation. If the adjacency list is not sorted the time complexity of the algorithm
would be O(k. x |E|) instead of O(k¢ * |Eyeql).

Algorithm 7 Sorting Adjacency lists

procedure SORT(G, t)
INPUT: A DAG G = (V, E) and a topological sorting t of G
for each vertex: v; € G do
v;.stack <— new stack()
end for
for each vertex v; in reverse topological order do
for every incoming edge e(sj,v;) do
s;.stack.push(v;)
end for
end for
end procedure

Lemma 3.5.1. Algorithm 7 sorts the adjacency lists of immediate successors in
ascending topological order.

Proof of Lemma 3.5.1. Assume that there is a stack (uq,...,u,), uy is the top of
the stack. Assume that there is a pair (uj,uy) in the stack, where u; has a
bigger topological rank than wuj and u; precedes u;. That means that the for-loop
examined u; before uy since it goes through the vertices in reverse topological
order. This is a contradiction. The vertex u; cannot precede uy, if it was examined
first by the for-loop. O

3.5.3 Creating the Indexing Scheme.

Algorithm 8 constructs the indexing scheme. The first for-loop initializes the array
of indexes. For every vertex, it initializes the cell that corresponds to its chain.
The rest of the cells are initialized to infinite. The indexing scheme initialization
is illustrated in figure 3.10. The dashes represent the infinite. Notice that after
the initialization, the indexes of all sink vertices have been calculated. Since a sink
has no successors, the only vertex it can reach is itself.

The second for-loop builds the indexing scheme. It goes through vertices in
descending topological order. For each vertex, it visits its immediate successors

38 CHAPTER 3. PATH/CHAIN DECOMPOSITION

Algorithm 8 Indexing Scheme

1: procedure CREATE INDEXING SCHEME(G, T, D)
INPUT: A DAG G = (V, E), a topological sorting T of G, and the decompo-
sition D of G.

2: for each vertex: v; € G do

3: v;.indexes <— new table[size of D]

4: v;.indexes.fill(co0)

5: ch_no < v;’s chain index

6: pos < v;’s chain position

7: v;.indexes| ch_no | < pos

8: end for

9: for each vertex v; in reverse topological order do
10: while v;.stack # () do

11: target < v;.stack.pop()
12: t_ch < target’s chain index

13: t_pos < target’s chain position
14: if t_pos < v;.indexes[t_ch] then // (v, target) is not transitive
15: v;.updateIndexes(target.indexes)

16: end if

17: end while

18: end for
19: end procedure

3.5. INDEXING SCHEME

(1,1) Chain 1 (2,1) Chain 2

Figure 3.10: Initialization of indexes.

39

40 CHAPTER 3. PATH/CHAIN DECOMPOSITION

(outgoing edges) in ascending topological order and updates the indexes. Suppose
we have the edge (v,s), and we have calculated the indexes of vertex s (s is
immediate successor of v). The process of updating the indexes of v with its
immediate successor s means that s will pass all its information to the vertex v.
Hence, vertex v will be aware that it can reach s and all its successors. Assume
the array of indexes of v is [a1, ag, ..., ax,| and the array of s is [b1, b, ..., bx,|. To
update the indexes of v using s, we merely trace the arrays and keep the smallest
values. For every pair of indexes (a;, b;), 0 < i < ke, the new value of a; will be
min{a; , b;}. This process needs k. steps.

Lemma 3.5.2. Given a vertex v and the calculated indexes of its successors, the
while-loop of algorithm 8 (lines 10-17) calculates the indexes of v by updating its
array with its non-transitive outgoing edges’ successors.

Proof. Updating the indexes of vertex v with all its immediate successors will make
v aware of all its descendants. The while-loop of Algorithm 8 does not perform
the update function for every direct successor. It skips all the transitive edges.
Assume there is such a descendant ¢ and the transitive edge (v,t). Since the edge
is transitive, we know by definition that there exists a path from v to ¢t with a
length of more than 1. Suppose that the path is (v, vy, ..,t). with a traversal of the
chains. Vertex v is a predecessor of ¢ and immediate successor of v. Hence it has
a lower topological rank than ¢. Since, while-loop examines the incident vertices
in ascending topological order, then vertex t will be visited after vertex v;. The
opposite leads to a contradiction. Consequently, for every incident transitive edge
of v, the loop firstly visits a vertex vy which is a predecessor of t. Thus vertex v
will be firstly updated by v; and it will record the edge (v,t) as transitive. There
is no reason to update vertex v indexes with those of vertex ¢ since the indexes of
t will be greater or equal. O

Theorem 3.5.3. Let G = (V,E) be a DAG. Algorithm 8 computes the indexing
scheme in O(ke * |Eyeq|) time.

Proof of Theorem 3.5.3. In the initialization step, the indexes of all sink vertices
have been computed as we described above. Taking vertices in reverse topological
order, the first vertex we meet is a sink vertex. When the for-loop of line 9 visits the
first non-sink vertex, the indexes of its successors are computed (all its successors
are sink vertices). According to Lemma 1, we can calculate its indexes, ignoring
the transitive edges. Assume the for-loop has reached the vertex v; in the i — th
iteration, and the indexes of its successors are calculated. Similarly, from Lemma
1, we can calculate its indexes. By induction, we can calculate the indices of all
vertices, ignoring all transitive edges in O(|Eyeq| * k¢) time. O

3.5.4 Experiments

We used the same graphs of 5000 and 10000 nodes as we described in Section
3.3.3 produced by three different models of the Networkx. We performed chain

3.5. INDEXING SCHEME 41

decomposition using our approach (Alg. 6, H3_conc), and created the indexing
scheme using Algorithm 8). Assume the sorting of the adjacency list is a prepro-
cessing step (Alg. 7) and the input graph has sorted adjacency lists. We recorded
our results in Tables 3.4 and 3.5. Table 3.4 holds the results of graphs with 5000
nodes, and Table 3.5 the results of graphs with 10000 nodes. Next, we explain the
columns of the tables.

e Av. Degree: The average degree of the graph

e Chains: Number of chains computed by our heuristic (H3_conc).
e |E¢ |: Number of transitive edges.

¢ |E;cq|: Number of non-transitive edges.

o |E¢;|/|E|: The percentage of transitive edges.

e H3 _conc Time (ms): The time, in milliseconds, of the chain decomposition
step.

e Indexing Scheme Time (ms): The time, in milliseconds, of the indexing
scheme creation step.

e Total: The total time(ms) needed to decompose the graph and create the
indexing scheme. It is the sum of the two preceding cells.

e TC: The time needed by a known algorithm for transitive closure with time
complexity O(|V|* |E|). The algorithm performs a DFS function for every
vertex to mark reachable vertices. It stores the results in a 2-D adjacency
matrix.

The phase of indexing scheme creation needs k. * |Eyeq| + |Etr| steps. The num-
bers on the tables are interesting. As the average degree increases and the graph
becomes denser, the cardinality of E,..; remains almost stable, and the chains de-
crease. Of course, since the E,..4 does not vary as the average degree increases, the
cardinality of Ey, increases (Ey = E—E,¢q). The algorithm merely traces in linear
time the transitive edges. Consequently, the growth of Ey,. does not affect the run
time considerably. As a result, the run time of our technique does not increase
as the input graph increases. To demonstrate it clearly, we drew the line chart
of figure 3.11 for the graphs of 10000 nodes produced by the Erdos-Renyi model.
The blue line represents the run time of the indexing scheme, and the red line the
run time of the algorithm based on DFS (TC). The time of the algorithm based
on DFS increases as the average degree increases, while the time of the indexing
scheme is a straight line parallel to the x-axis. All models follow this pattern. See
Tables 3.4 and 3.5.

We decompose the graph into chains with our algorithm since it is the most
efficient. A chain decomposition is preferable to a path decomposition if we create

42 CHAPTER 3. PATH/CHAIN DECOMPOSITION
Av. Degree Channels co Indexing Total
Time Scheme Time
(ms) Time(ms) (ms)
5 2283 8 237 246
10 1432 11 221 231
20 871 10 170 180
40 513 12 152 164
80 294 15 162 177
160 165 21 278 299
(a) Metrics: Creating the indexing scheme in combination with the chain order
heuristic.
Av, Degree Channels H3_conc Indexing Total
Time Scheme Time
(ms) Time(ms) (ms)
5 1837 9 194 203
10 1003 11 163 174
20 516 16 100 116
40 271 39 108 147
80 139 43 130 173
160 72 75 237 312

(b) Metrics: Creating the indexing scheme in combination with algorithm 6 for
chain decomposition.

Table 3.3: The tables present the run time of indexing scheme using path and
chain decomposition.

the indexing scheme. Assume that we have a path decomposition, and we perform
chain concatenation. If there is no concatenation between two paths, the concate-
nation algorithm will run in linear time, which is an acceptable cost. On the other
hand, if there are concatenations, for each one of them, the cost is O(l) time units
but the gain in the following step of scheme creation is |V| units of space and
| Ereq| units of time. That stands because every concatenation reduces the indexes
we need for every vertex by one. Hence, applying path concatenation, we create
faster a more compact indexing scheme.

Tables 3.3a and 3.3b include metrics of creating the indexing scheme using
different decomposition techniques on Erdos Reyni graphs of 10000 nodes. In table
3.3a, we have created the indexing scheme using the chain order heuristic(path
decomposition), while in table 3.3b, we use our chain decomposition algorithm.

3.6 Conclusions

In this work, we present heuristics that find a chain decomposition in almost linear
time and such that the number of chains can be very close to the minimum. Our

3.6. CONCLUSIONS 43
|V]=5000
Av. Channels | Exr| | Erea | |Ex|/|E] | H3 conc | Indexing Total | TC
Degree Time Scheme
(ms) Time(ms)
Barabasi Albert
5 1630 8054 18921 | 0.32 3 101 104 137
10 1055 28230 21670 | 0.57 12 79 91 333
20 664 75801 23799 | 0.76 6 54 60 638
40 355 180815 22504 | 0.89 10 48 58 1418
80 207 382422 20854 | 0.95 122 118 240 | 3018
160 163 770771 17660 | 0.98 25 107 132 | 5464
Erdos Renyi
5 923 3440 21466 | 0.138 6 67 73 172
10 492 24761 25425 | 049 10 51 61 487
20 252 75312 24646 | 0.75 5 26 31 1079
40 139 175809 22634 | 0.89 46 51 97 2896
80 70 378015 19435 | 0.95 16 50 66 5260
160 38 769919 16843 | 0.98 a8 138 236 | 8609
Watts-Strogatz, b=0.9
5 687 7742 17258 | 0.30 13 71 84 393
10 212 37992 12008 | 0.75984 11 18 29 817
20 60 89272 10728 | 0.89 23 22 45 1530
40 25 186486 13514 | 0.93 47 45 92 3704
80 20 386294 13706 | 0.97 115 103 218 6172
160 17 787066 12934 | 0.98 253 207 406 9173
Watts-Strogatz, b=0.3
5 9 18421 6579 0.74 11 8 19 910
10 4 43505 6495 0.87 8 11 19 1107
20 4 93490 6510 0.93 18 18 36 2176
40 5 193416 6584 0.97 17 18 35 4753
80 4 393348 6652 0.98 98 82 180 7949
160 5 793430 6570 0.99 250 166 416 | 11757
Path-Based DAG Model, Paths=70
5 86 14155 10809 | 0.57 8 7 15 206
10 101 36801 13102 | 0.74 7 12 19 313
20 107 84168 15419 | 0.85 7 15 22 890
40 93 181388 16988 | 0.91 49 216 265 2584
80 73 376220 17303 | 0.96 128 163 291 4603
160 51 758207 16566 | 0.98 55 141 196 | 9358

Table 3.4: Indexing scheme analysis on graphs of 5000 nodes.

44 CHAPTER 3. PATH/CHAIN DECOMPOSITION

|V|=10000
Av. Channels | Exr] | Ereal |Ex|/]E] | H3_conc | Indexing Total | TC
Degree Time Scheme

(ms) Time(ms)

Barabasi Albert
5 3341 14544 35431 | 0.29 7 278 285 441
10 2159 53503 46397 | 0.54 14 231 245 | 1379
20 1264 147791 51809 | 0.74 15 218 233 | 3347
40 752 355854 52465 | 0.85 28 188 216 | 7700
80 400 764926 48350 | 0.94 271 322 593 | 14632
160 228 1560464 42967 | 0.97 81 264 345 | 24601

Erdos Renyi
5 1837 5595 44401 | 0.11 12 200 212 | 600
10 1003 44813 55366 | 0.45 9 161 170 | 1935
20 516 144276 55310 | 0.72 16 110 126 | 6031
40 271 347323 52620 | 0.87 25 101 126 | 13522
80 139 749781 46666 | 0.94 40 145 185 23052
160 72 1548153 39710 | 0.97 73 249 322 37613

Watts-Strogatz, b=0.9
5 1332 13353 36647 | 0.27 12 175 187 | 1213
10 447 74782 25218 | 0.75 9 53 62 3829
20 100 178930 21070 | 0.89 13 32 45 9279
40 29 373054 26946 | 0.93 24 60 84 13144
80 24 771374 28626 | 0.96 266 247 513 25585
160 22 1571957 28043 | 0.98 80 232 312 | 36507

Watts-Strogatz, b=0.3
5 12 36816 13184 | 0.73 27 19 46 3468
10 4 86804 13196 | 0.86 18 45 63 5063
20 4 186756 13244 | 0.93 10 42 52 12156
40 4 386751 13249 | 0.97 19 48 67 21055
80 4 786840 13160 | 0.98 237 187 424 | 31016
160 4 1586896 13104 | 0.99 62 167 229 | 40704

Path-Based DAG Model, Paths=100

5 125 8182 16810 | 0.33 12 16 28 240
10 141 74182 25722 | 0.74 11 30 41 937
20 153 168839 30728 | 0.85 13 43 56 5015
40 142 363753 34606 | 091 27 78 105 13797
80 120 756578 36918 | 0.96 56 142 198 | 27904
160 89 1538101 36496 | 0.98 77 265 342 | 41235

Table 3.5: Indexing scheme analysis on graphs of 10000 nodes.

3.6. CONCLUSIONS 45

|N|=10000

38.000

36.000 il

34,000 il

32,000 /

30.000 o

28,000 i

26,000

24,000 r

22,000

20,000

15.000

16,000

14,000

12.000

10,000
8.000
6.000
4,000
2,000

0

Time(ms)

0O 10 20 30 40 OS50 60 70 80 90 100 110 120 130 140 150 160
Av, degree

Figure 3.11: Run time comparison between the Indexing Scheme (blue line) and
TC (red line) for Erdos-Renyi model on graphs of 10000 nodes. See table 3.5.

experiments expose the behavior of the width as the density grows, along with the
efficiency of our heuristics. We bound the set E,..q by width % |V| and illustrate
how to find a subset of Ej in linear time given a path/chain decomposition.
Our approach and theory have applications in many areas. We applied them
to the problem of transitive closure. We built in O(width * k. * |V|) time and
O(k.*|V|) space an indexing scheme that allows us to answer reachability queries
in constant time. The time complexity is O(k. * | Eyeq|), and the space complexity
is O(k. = |V'|). Additionally, our experimental work reveals the practical efficiency
of this approach, especially for very large, and medium to dense graphs.

46

CHAPTER 3. PATH/CHAIN DECOMPOSITION

Bibliography

1]
2]
3]

[4]

[10]

[11]

Jfree.
Tom Sawyer Software.
yWorks.

R. Agrawal. Alpha: an extension of relational algebra to express a class of
recursive queries. IEEE Transactions on Software Engineering, 14(7):879-885,
1988.

Rakesh Agrawal, Alexander Borgida, and Hosagrahar Visvesvaraya Jagadish.
Efficient management of transitive relationships in large data and knowledge
bases. ACM SIGMOD Record, 18(2):253-262, 1989.

A. V. Aho, M. R. Garey, and J. D. Ullman. The transitive reduction of a
directed graph. SIAM Journal on Computing, 1(2):131-137, 1972.

Aaron Bangor, Philip Kortum, and James Miller. Determining what individ-
ual sus scores mean: Adding an adjective rating scale. Journal of usability
studies, 4(3):114-123, 2009.

Michael J. Bannister, David A. Brown, and David Eppstein. Confluent orthog-
onal drawings of syntax diagrams. In Emilio Di Giacomo and Anna Lubiw,
editors, Graph Drawing and Network Visualization - 23rd International Sym-
posium, GD 2015, Los Angeles, CA, USA, September 24-26, 2015, Revised
Selected Papers, Lecture Notes in Computer Science, pages 260-271, 2015.

Albert-Laszlé Barabdsi and Réka Albert. Emergence of scaling in random
networks. science, 286(5439):509-512, 1999.

Paola Bonizzoni. A linear-time algorithm for the perfect phylogeny haplotype
problem. Algorithmica, 48(3):267-285, 2007.

Nicolas Boria, Gianpiero Cabodi, Paolo Camurati, Marco Palena, Paolo
Pasini, and Stefano Quer. A greedy approach to answer reachability queries
on dags. arXiv preprint arXiv:1611.02506, 2016.

47

48

[12]

[17]

[21]

BIBLIOGRAPHY

Ulrik Brandes and Boris Kopf. Fast and simple horizontal coordinate assign-
ment. In Graph Drawing, 9th International Symposium, GD 2001 Vienna,
Austria, September 23-26, 2001, Revised Papers, pages 31-44, 2001.

Christoph Buchheim, Michael Jiinger, and Sebastian Leipert. A fast layout
algorithm for k-level graphs. In Graph Drawing, Sth International Sympo-
sium, GD 2000, Colonial Williamsburg, VA, USA, September 20-23, 2000,
Proceedings, pages 229-240, 2000.

Manuel Céceres, Massimo Cairo, Brendan Mumey, Romeo Rizzi, and Alexan-
dru I Tomescu. A linear-time parameterized algorithm for computing the
width of a dag. In International Workshop on Graph-Theoretic Concepts in
Computer Science, pages 257-269. Springer, 2021.

Li Chen, Amarnath Gupta, and M Erdem Kurul. Stack-based algorithms for
pattern matching on dags. In Proceedings of the 31st international conference
on Very large data bases, pages 493-504. Citeseer, 2005.

Yangjun Chen and Yibin Chen. On the dag decomposition. British Jour-
nal of Mathematics and Computer Science, 2014. 10(6): 1-27, 2015, Article
no.BJMCS.19380, ISSN: 2231-0851.

Yangjun Chen and Yibin Chen. On the graph decomposition. In 2014 IFEFE
Fourth International Conference on Big Data and Cloud Computing, pages
777-784. TEEE, 2014.

Markus Chimani, Carsten Gutwenger, Michael Jinger, Gunnar W. Klau,
Karsten Klein, and Petra Mutzel. The open graph drawing framework
(OGDF). In Handbook on Graph Drawing and Visualization., pages 543-569.
2013.

Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis.
Graph Drawing: Algorithms for the Visualization of Graphs. Prentice-Hall,
1999.

Giuseppe Di Battista, Ashim Garg, Giuseppe Liotta, Armando Parise,
Roberto Tamassia, Emanuele Tassinari, Francesco Vargiu, and Luca Vismara.
Drawing directed acyclic graphs: An experimental study. In Stephen C. North,
editor, Graph Drawing, Symposium on Graph Drawing, GD 96, Berkeley,
California, USA, September 18-20, Proceedings, volume 1190 of Lecture Notes
in Computer Science, pages 76-91. Springer, 1996.

Giuseppe Di Battista, E Pietrosanti, Roberto Tamassia, and loannis G Tollis.
Automatic layout of pert diagrams with x-pert. In [Proceedings] 1989 IEEE
Workshop on Visual Languages, pages 171-176. IEEE, 1989.

BIBLIOGRAPHY 49

[22]

[27]

[28]

[29]

Emilio Di Giacomo, Walter Didimo, Giuseppe Liotta, Fabrizio Montecchiani,
and Joannis G Tollis. Exploring complex drawings via edge stratification. In
International Symposium on Graph Drawing, pages 304-315. Springer, 2013.

R. P. DILWORTH. A decomposition theorem for partially ordered sets. Ann.
Math., 52:161-166, 1950.

Fulkerson DR. Note on dilworth’s embedding theorem for partially ordered
sets. Proc. Amer. Math. Soc., 52(7):701-702, 1956.

Peter Eades and Nicholas C. Wormald. Edge crossings in drawings of bipartite
graphs. Algorithmica, 11(4):379-403, 1994.

Markus Eiglsperger, Martin Siebenhaller, and Michael Kaufmann. An effi-
cient implementation of Sugiyama’s algorithm for layered graph drawing. In
Janos Pach, editor, Graph Drawing, pages 155-166, Berlin, Heidelberg, 2005.
Springer Berlin Heidelberg.

P Erd6s. Rényi, a.:” on random graphs. I[I”. Publicationes Mathematicae
(Debre, 1959.

Donald L Fisher and William M Goldstein. Stochastic pert networks as models
of cognition: Derivation of the mean, variance, and distribution of reaction
time using order-of-processing (op) diagrams. 1983.

Michael Frohlich and Mattias Werner. Demonstration of the interactive graph-
visualization system da Vinci. In Graph Drawing, DIMACS International
Workshop, GD 94, Princeton, New Jersey, USA, October 10-12, 1994, Pro-
ceedings, pages 266269, 1994.

Delbert Ray Fulkerson. Note on dilworth’s decomposition theorem for par-
tially ordered sets. In Proc. Amer. Math. Soc, volume 7, pages 701-702, 1956.

Emden R Gansner, Eleftherios Koutsofios, Stephen C North, and K-P Vo.
A technique for drawing directed graphs. IEEE Transactions on Software
Engineering, 19(3):214-230, 1993.

Emden R. Gansner, Eleftherios Koutsofios, Stephen C. North, and Kiem-
Phong Vo. A technique for drawing directed graphs. IFEFE Trans. Software
Eng., 19(3):214-230, 1993.

Emden R. Gansner, Eleftherios E. Koutsofios, and Stephen C. North. Drawing
graphs with dot. 2015.

Emden R. Gansner and Stephen C. North. An open graph visualization
system and its applications to software engineering. Softw., Pract. Ezper.,
30(11):1203-1233, 2000.

50

[35]

[44]

[45]

[46]

[47]

BIBLIOGRAPHY

Mohammad Ghoniem, J-D Fekete, and Philippe Castagliola. A comparison
of the readability of graphs using node-link and matrix-based representations.
In IEEE symposium on information visualization, pages 17-24. leee, 2004.

Michael T. Goodrich and Roberto Tamassia. Algorithm Design and Applica-
tions. Wiley Publishing, 1st edition, 2014.

Michael T Goodrich and Roberto Tamassia. Algorithm design and applica-
tions. Wiley Hoboken, 2015.

Alla Goraléikova and Vaclav Koubek. A reduct-and-closure algorithm for
graphs. In International Symposium on Mathematical Foundations of Com-
puter Science, pages 301-307. Springer, 1979.

Jens Gramm, Till Nierhoff, Roded Sharan, and Till Tantau. Haplotyping with
missing data via perfect path phylogenies. Discrete Applied Mathematics,
155(6-7):788-805, 2007.

Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network struc-
ture, dynamics, and function using networkx. Technical report, Los Alamos
National Lab.(LANL), Los Alamos, NM (United States), 2008.

Michael Himsolt. Graphlet: design and implementation of a graph editor.
Softw., Pract. Ezxper., 30(11):1303-1324, 2000.

John E. Hopcroft and Richard M. Karp. An no/2 algorithm for maximum
matchings in bipartite graphs. SIAM J. Comput., 2(4):225-231, 1973.

Selma Ikiz and Vijay K Garg. Efficient incremental optimal chain partition
of distributed program traces. In 26th IEEE International Conference on
Distributed Computing Systems (ICDCS’06), pages 18-18. IEEE, 2006.

H. V. Jagadish. A compression technique to materialize transitive closure.
ACM Trans. Database Syst., 15(4):558-598, December 1990.

H. V. Jagadish. A compression technique to materialize transitive closure.
ACM Trans. Database Syst., 15(4):558-598, 1990.

Ruoming Jin, Ning Ruan, Saikat Dey, and Jeffrey Xu Yu. SCARAB: scal-
ing reachability computation on large graphs. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, SIGMOD 2012,
Scottsdale, AZ, USA, May 20-24, 2012, pages 169-180, 2012.

Ruoming Jin, Yang Xiang, Ning Ruan, and Haixun Wang. Efficiently answer-
ing reachability queries on very large directed graphs. In Proceedings of the
2008 ACM SIGMOD international conference on Management of data, pages
595-608, 2008.

BIBLIOGRAPHY 51

[48]

[51]

[52]

Michael Junger, Petra Mutzel, and Christiane Spisla. A flow formulation
for horizontal coordinate assignment with prescribed width. In Graph Draw-
ing and Network Visualization - 26th International Symposium, GD 2018,
Barcelona, Spain, September 26-28, 2018, Proceedings, pages 187-199, 2018.

Michael Kaufmann and Dorothea Wagner. Drawing graphs: Methods and
models. LNCS wvol. 2025, 2001.

Evgenios M. Kornaropoulos and Ioannis G. Tollis. Algorithms and bounds
for overloaded orthogonal drawings. Journal of Graph Algorithms and Appli-
cations, 20(2):217-246, 2016.

Joseph B Kruskal. On the shortest spanning subtree of a graph and the trav-
eling salesman problem. Proceedings of the American Mathematical society,
7(1):48-50, 1956.

Anna Kuosmanen, Topi Paavilainen, Travis Gagie, Rayan Chikhi, Alexan-
dru I. Tomescu, and Veli Makinen. Using minimum path cover to boost
dynamic programming on dags: Co-linear chaining extended. In Research in
Computational Molecular Biology - 22nd Annual International Conference,
RECOMB 2018, Paris, France, April 21-2/, 2018, Proceedings, pages 105—
121, 2018.

Lei Li, Wen Hua, and Xiaofang Zhou. HD-GDD: high dimensional graph dom-
inance drawing approach for reachability query. World Wide Web, 20(4):677—
696, 2017.

Panagiotis Lionakis, Giacomo Ortali, and Ioannis Tollis. Adventures in ab-
straction: Reachability in hierarchical drawings. In Graph Drawing and Net-
work Visualization: 27th International Symposium, GD 2019, Prague, Czech
Republic, September 17-20, 2019, Proceedings, pages 593-595, 2019.

Panagiotis Lionakis, Giacomo Ortali, and loannis G Tollis. Constant-time
reachability in dags using multidimensional dominance drawings. SN Com-
puter Science, 2(4):1-14, 2021.

Nikola S. Nikolov and Patrick Healy. Hierarchical Drawing Algorithms, in
Handbook of Graph Drawing and Visualization, ed. Roberto Tamassia. CRC
Press, 2014. pp. 409-453.

James B. Orlin. Max flows in O(nm) time, or better. In Symposium on Theory
of Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013,
pages 765—-774, 2013.

Giacomo Ortali and Ioannis G Tollis. Algorithms and bounds for drawing
directed graphs. In International Symposium on Graph Drawing and Network
Visualization, pages 579-592. Springer, 2018.

52

[59]

[60]

[61]

[62]

[71]

BIBLIOGRAPHY

Giacomo Ortali and Ioannis G. Tollis. A new framework for hierarchical draw-
ings. Journal of Graph Algorithms and Applications, 23(3):553-578, 2019.

Frances Newbery Paulisch and Walter F. Tichy. EDGE: an extendible graph
editor. Softw., Pract. Ezper., 20(S1):S1, 1990.

Micha A Perles. A proof of dilworth’s decomposition theorem for partially
ordered sets. Israel Journal of Mathematics, 1(2):105-107, 1963.

Sergey Pupyrev, Lev Nachmanson, and Michael Kaufmann. Improving layered
graph layouts with edge bundling. In Ulrik Brandes and Sabine Cornelsen,
editors, Graph Drawing - 18th International Symposium, GD 2010, Konstanz,
Germany, September 21-24, 2010. Revised Selected Papers, Lecture Notes in
Computer Science, pages 329-340, 2010.

Helen C Purchase, John Hamer, Martin Noéllenburg, and Stephen G
Kobourov. On the usability of lombardi graph drawings. In International
symposium on graph drawing, pages 451-462. Springer, 2012.

Georg Sander. Layout of compound directed graphs. Technical report, Uni-
versitit des Saarlandes, 1996.

Claus-Peter Schnorr. An algorithm for transitive closure with linear expected
time. SIAM J. Comput., 7(2):127-133, 1978.

K. SIMON. An improved algorithm for transitive closure on acyclic digraphs.
Theor. Comput. Sci., 58(1-3):325-346, 1988.

Kozo Sugiyama, Shojiro Tagawa, and Mitsuhiko Toda. Methods for visual
understanding of hierarchical system structures. IEEFE Trans. Systems, Man,
and Cybernetics, 11(2):109-125, 1981.

Kozo Sugiyama, Shojiro Tagawa, and Mitsuhiko Toda. Methods for visual un-
derstanding of hierarchical system structures. IEEE Transactions on Systems,
Man, and Cybernetics, 11(2):109-125, 1981.

Robert Tarjan. Depth-first search and linear graph algorithms. In 12th Annual
Symposium on Switching and Automata Theory (swat 1971), pages 114-121,
1971.

Alexander I Tomlinson and Vijay K Garg. Monitoring functions on global
states of distributed programs. Journal of Parallel and Distributed Computing,
41(2):173-189, 1997.

Silke Trifll and Ulf Leser. Fast and practical indexing and querying of very
large graphs. In Proceedings of the 2007 ACM SIGMOD international con-
ference on Management of data, pages 845-856, 2007.

BIBLIOGRAPHY 53

[72]

[73]

Edward R Tufte. The visual display of quantitative information, volume 2.
Graphics press Cheshire, CT, 2001.

Sebastiaan J. van Schaik and Oege de Moor. A memory efficient reachability
data structure through bit vector compression. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, SIGMOD 2011,
Athens, Greece, June 12-16, 2011, pages 913-924, 2011.

René Rodrigues Veloso, Loic Cerf, Wagner Meira Jr., and Mohammed J.
Zaki. Reachability queries in very large graphs: A fast refined online search
approach. In Proceedings of the 17th International Conference on Extending
Database Technology, EDBT 2014, Athens, Greece, March 24-28, 201/., pages
511-522, 2014.

Haixun Wang, Hao He, Jun Yang, Philip S Yu, and Jeffrey Xu Yu. Dual
labeling: Answering graph reachability queries in constant time. In 22nd In-
ternational Conference on Data Engineering (ICDE’06), pages 75-75. IEEE,
2006.

Duncan J Watts and Steven H Strogatz. Collective dynamics of ’small-world’
networks. nature, 393(6684):440-442, 1998.

Hilmi Yildirim, Vineet Chaoji, and Mohammed J. Zaki. GRAIL: a scalable
index for reachability queries in very large graphs. VLDB J., 21(4):509-534,
2012.

