
Analysis and Visualization of Hierarchical

Graphs

Giorgos Kritikakis

Thesis submitted in partial fulfillment of the requirements for the

Masters’ of Science degree in Computer Science and Engineering

University of Crete
School of Sciences and Engineering
Computer Science Department

Voutes University Campus, 700 13 Heraklion, Crete, Greece

Thesis Advisor: Prof. Ioannis G. Tollis

Analysis and Visualization of Hierarchical Graphs

Abstract

In this work, we developed the Path-Based Framework (PBF). PBF is a re-
cent graph drawing framework that resembles but also differs from the classical
Sugiyama technique. PBF is based on the concepts of path and chain decomposi-
tion. We extended that idea. We draw all edges, apply edge bundling, minimize
the height using a compaction technique, and reduce the width by applying al-
gorithms similar to task scheduling. As a result, we present a generic framework
suitable for hierarchical graph drawings.

Furthermore, we explore cutting-edge path and chain decomposition algorithms
and applications. Our algorithms are linear or almost linear, and our results are
very close to the optimum.

More precisely, we will show how to create a sub-optimal chain decomposition
of a DAG (directed acyclic graph) in almost linear time. The number of vertex-
disjoint chains our algorithm creates is very close to the minimum. The time
complexity of our algorithm is O(|E| + c ∗ l), where c is the number of path
concatenations and l is the longest path of the graph. We will give a detailed
explanation in the following sections. This fundamental concept has a wide area
of applications. We will focus on a few of them. We will extensively describe how
to solve the transitive closure of graphs and answer queries in constant time by
creating an indexing scheme. Our method needs O(kc∗|Ered|) time and O(kc∗|V |)
space. The factor kc is a sub-optimal number of chains, Ered is the set of non-
transitive edges, and |V | is the number of nodes. Moreover, we show that |Ered| is
bounded, |Ered| ≤ width∗|V |, and we illustrate how to find a subset of Etr (the set
of transitive edges) without calculating the transitive closure. Using our theory,
we can enhance every transitive closure technique. We accompany our approach
and algorithms with extensive experimental work. Our experiments reveal that
our methods are not merely theoretically efficient since the performance is even
better in practice.

Keywords: Algorithms, graph algorithms, performance, chain decomposition,
path decomposition, transitive closure, transitive reduction, hierarchy, query pro-
cessing, DAG, data structures, network analysis.

Τίτλος

Περίληψη

Σε αυτό το έργο έχουμε αναπτύξει το Path− based− Framework (PBF). Το
PBF είναι ένα πρόσφατο πλαίσιο οπτικοποίησης ιεραρχικών γραφημάτων που μοι-
άζει αλλά επίσης διαφέρει από το κλασικό πλαίσιο τεσσάρων φάσεων του Sugiyama.
Το PBF βασίζεται στη ιδέα της διάσπασης του γράφου σε κανάλια και μονοπάτια.
Επεκτείναμε αυτή την ιδέα. Ζωγραφίζουμε όλες τις ακμές, εφαρμόζουμε επικάλυψη

ακμών, ελαχιστοποιούμε το ύψος, και μειώνουμε το πλάτος του γραφήματος εφαρ-

μόζοντας τεχνικές όμοιες με αυτές του χρονο-προγραμματισμού εργασιών. Ως εκ

τούτου, παρουσιάζουμε ένα γενικό μοντέλο οπτικοποίησης ιεραρχικών γραφημάτων.

Ακόμη,εξερευνήσαμε αλγορίθμους αιχμής για διάσπαση γράφων σε μονοπάτια και

κανάλια. Οι αλγόριθμοι μας είναι γραμμικοί ή σχεδόν γραμμικοί, και τα αποτελέσματα

τους είναι πολύ κοντά στο βέλτιστο. Επιπρόσθετα, αναπτύξαμε ένα πλαίσιο οπτικοπο-

ίησης ιεραρχικών γραφημάτων που βασίζεται στην διάσπαση σε μονοπάτια και κανάλια

και μας βοηθάει να αποκαλύψουμε κρίσιμες πτυχές των ιεραρχιών ενός γράφου.

Ακριβέστερα, θα δείξουμε πώς να δημιουργήσουμε μια υποβέλτιστη διάσπαση σε

κανάλια ενός άκυκλου κατευθυνόμενου γραφήματος σε σχεδόν γραμμικό χρόνο. Ο

αριθμός των καναλιών που δημιουργεί ο αλγόριθμος μας, τα οποία δεν μοιράζονται

κοινούς κόμβους, είναι πολύ κοντά στο ελάχιστο. Η χρονική πολυπλοκότητα του

αλγορίθμου μας είναι O(|E| + c ∗ l), όπου c είναι ο αριθμός των καναλιών και l ο
αριθμός της μεγαλύτερης διαδρομής του γράφου. Θα δώσουμε αναλυτική εξήγηση

στα επόμενα κεφάλαια. Αυτή η θεμελιώδης έννοια έχει ένα ευρύ φάσμα εφαρμογών.

Θα επικεντρωθούμε σε μερικές από αυτές. Θα περιγράψουμε εκτενώς πώς να λύσου-

με το πρόβλημα της μεταβατικής κλειστότητας και πώς να απαντάμε ερωτήματα σε

σταθερό χρόνο δημιουργώντας ένα γνωστό σχήμα από δείκτες. Η μέθοδος μας χρει-

άζεται O(kc ∗ |Ered|) χρόνο και O(kc ∗ |V |) χώρο. Ο όρος kc είναι το μέγεθος μιας
υποβέλτιστης διάσπασης καναλιών, ο όρος Ered είναι το σύνολο των μη-μεταβατικών

ακμών του γράφου, και ο όρος |V | υποδηλώνει τον αριθμό των κόμβων. Επιπλέον
θα δείξουμε πως το |Ered| φράζεται, |Ered| ≤ width ∗ |V |, και θα περιγράψουμε πως
μπορούμε να βρούμε ένα υποσύνολο του Etr (σύνολο μεταβατικών ακμών) χωρίς να

υπολογίσουμε τη μεταβατική κλειστότητα. Οι μεθοδολογίες μας συνοδεύονται από

εκτενής πειράματα. Τα πειράματα μας δείχνουν ότι οι αλγόριθμοι μας δεν είναι απλώς

αποδοτικοί στη θεωρία. Στη πράξη η απόδοση είναι ακόμα ποιό μεγάλη.

Λέξεις κλειδιά: Αλγόριθμοι, αλγόριθμοι γράφων, απόδωση, ιεραρχίες γράφων,

διάσπαση γράφου σε κανάλια, διάσπαση γράφου σε μονοπάτια, συνένωση μονοπατιών,

μεταβατική κλειστότητα, συμπιεσμένη μεταβατική κλειστότητα, μεταβατική αφαίρεση,

διαχείριση ερωτημάτων, σχήμα δεικτών, ιεραρχικά γραφήματα, πειραματική εργασία,

‘Ακυκλοι γράφοι, δομές δεδομένων, ανάλυση δικτύων.

Ευχαριστίες

Θα ήθελα να ευχαριστήσω θερμά τον καθηγητή κ. Τόλλη Ιωάννη, ο οποίος ήταν ο

επόπτης μου κατα τη διάρκεια των μεταπτυχιακών μου σπουδών. ΄Ηταν το άτομο που

μοιράζομουν τις σκέψεις μου και τα ερευνητικά μου ενδιαφέροντα. Επίσης θα ήθελα

να ευχαριστήσω κ. Παναγιώτη Λιονάκη για την εξαίρετη συνεργασία μας, τα μέλη της

επιτροπής, και τέλος, νιώθω την ανάγκη να ευχαριστήσω την οικογένειά μου για την

αγάπη, κατανόηση, και υποστήριξή τους.

στους γονείς μου

Contents

Table of Contents i

List of Tables iii

List of Figures v

1 Introduction 1

1.1 On Graph Hierarchies . 1

2 Path Based Framework 3

2.1 Introduction . 3

2.2 Overview of the Two Frameworks 5

2.3 An Algorithm for Computing Compact Drawings 7

2.3.1 Compaction . 7

2.3.2 Drawing the Path Transitive Edges 10

2.4 Experimental Results and Comparisons 11

2.4.0.1 A Heuristic for Ordering the Paths: 15

2.5 Conclusions and Open Problems 15

3 Path/Chain Decomposition 17

3.1 Introduction . 17

3.2 Path Decomposition . 17

3.3 Chain Decomposition . 20

3.3.1 Path Concatenation . 20

3.3.2 Chain Decomposition Heuristic: A Better Approach 22

3.3.3 Experiments . 22

3.4 Hierarchies and Transitivity . 33

3.5 Indexing Scheme . 34

3.5.1 The Indexing Scheme . 35

3.5.2 Sorting Adjacency lists . 37

3.5.3 Creating the Indexing Scheme. 37

3.5.4 Experiments . 40

3.6 Conclusions . 42

i

Bibliography 47

ii

List of Tables

3.1 Comparing path and chain decomposition algorithms on graphs
with 5000 nodes. 26

3.2 Comparing path and chain decomposition algorithms on graphs
with 10000 nodes. 27

3.3 The tables present the run time of indexing scheme using path and
chain decomposition. 42

3.4 Indexing scheme analysis on graphs of 5000 nodes. 43
3.5 Indexing scheme analysis on graphs of 10000 nodes. 44

iii

iv

List of Figures

2.1 In (a) we show the drawing Γ based on G as computed by Tom
Sawyer Perspectives which follows our proposed framework. In (b)
we show the drawing of the graph G as computed by OGDF. . . . 6

2.2 DAG G of Figure 2.1 drawn without its path transitive edges: (a)
drawing Γ1 is computed by Algorithm PBH, and it is the input of
Algorithm 1, (b) drawing Γ2 is the output of Algorithm 1. 9

2.3 Bundling of path transitive edges: (a) incoming edges into node
13, (b) after bundling, (c) outgoing edges from node 16, (d) after
bundling. 11

2.4 Results on number of crossings, bends, width, height and area for
PBF and OGDF for all DAGs in our study. 13

2.5 Results on the number of bends for PBF and OGDF for all DAGs
in our study. 14

2.6 An example of a DAG with 100 nodes and 175 edges drawn with
(a) PBF, and (b) OGDF. 14

3.1 On the left, there is a path decomposition of graph G. On the right,
a chain decomposition of G. 18

3.2 The width curve on graphs of 5000 and 10000 nodes using three
different models. 28

3.3 A comparison between Erdos-Renyi model and Path Based model. 29

3.4 The efficiency of our chain decomposition algorithm in Barabasi
Albert model. 29

3.5 The efficiency of our chain decomposition algorithm in Erdos Renyi
model. 30

3.6 The efficiency of our chain decomposition algorithm inWatts-Strogatz
model. 31

3.7 The efficiency of our chain decomposition algorithm in Path Based
model. 32

3.8 Example for the proof of Lemma 3.4.2. The blue edges are transi-
tive. (a) shows the outgoing transitive edges that end to the same
chain. (b) shows the incoming transitive edges that start from the
same chain. 33

3.9 An example of an indexing scheme. 36

v

3.10 Initialization of indexes. 39
3.11 Run time comparison between the Indexing Scheme (blue line) and

TC (red line) for Erdos-Renyi model on graphs of 10000 nodes. See
table 3.5. 45

vi

Chapter 1

Introduction

1.1 On Graph Hierarchies

The arrival of new technologies, advanced sensors, and the increasing tendency of
people to interact and use them, passively or actively, has led us to manage, ana-
lyze, and interpret an enormous amount of data. To achieve that, we develop more
efficient and faster tools and methods. Graph theory is a critical mathematical
modeling method employed in several applications of technology. In this work, we
explore graph hierarchies.

Hierarchical and often directed acyclic graphs are the de facto representation
for many applications in various domains including research and business. Such
graphs often represent hierarchical relationships between objects in a structure
or in a more complex network such as in PERT applications [21]. The analysis
and visualization of these directed (often acyclic) graphs has received significant
attention recently.

We developed a general-purpose hierarchical graph drawing framework that de-
parts from the classical four-phase framework of Sugiyama and produces readable
drawings. We call it Path-Based Framework since it is based on Path Decom-
position. In addition to [59], we draw all edges, apply edge bundling, minimize
the height using a compaction technique, and reduce the width of the drawing by
applying algorithms similar to task scheduling.

Furthermore, in this work, we developed a cutting-edge chain decomposition
technique. Several solutions that find the optimum chain decomposition have been
proposed [44, 24, 17, 14]. Finding the optimum solution is time-consuming and not
applicable for large graphs. We present a heuristic that finds a chain decomposition
close to the optimal in almost linear time. Chain decomposition has a wide area
of applications as in distributed computing [43, 70], in bioinformatics [10, 39], in
graph visualization [59], it can facilitate answering reachability queries [44, 66, 47],
and many more. We focus on answering reachability queries. We bound the
transitive edges and propose linear time preprocessing steps that facilitate every
transitive closure algorithm. The experiments show the efficiency of our proposals.

1

2 CHAPTER 1. INTRODUCTION

Answering efficiently reachability queries is an important research topic mostly
driven by various arising real-world applications, such as graph databases, GIS,
web mining, social network analysis, ontologies, and bioinformatics.

Definitions and Abbreviations

• DAG: Directed acyclic graph (DAG or dag) is a directed graph with no
directed cycles.

• Path/Chain: In a path every vertex is connected by a direct edge to its
successor, while in a chain any vertex is connected to its successor by a
directed path which may be an edge. The vertices of a path/chain are in
ascending topological order.

• Paths/Chains decomposition of a DAG: Let G = (V,E) be a DAG. A
path/chain decomposition of G is a set of vertex-disjoint paths/chains. The
decomposition includes all vertices of G. There is an example of a path and
a chain decomposition in figure 3.1.

– kp: We use this abbreviation to refer to the number of paths of a path
decomposition of a graph.

– kc: We use this abbreviation to refer to the number of chains of a chain
decomposition of a graph.

• Width: The maximal number of mutually unreachable vertices of the graph
[23].

– The number of chains in a minimal chain decomposition of a graph is
equal to its width.

• Transitive edge: An edge (v1, v2) of a DAG G is transitive if there is a
path longer than one that connects v1 and v2.

• DAG G(V,E): A DAG G. V represents the set of nodes and E the set of
edges.

– Etr : The set of all transitive edges. Etr ⊂ E.

– E′
tr : A subset of Etr.

– Ered : Ered = E − Etr , Ered ⊆ E.

– G = (V,Ered) : The transitive reduction [6] of G = (V,E). The transi-
tive reduction is unique for DAGs. It contains the minimum number of
edges needed to form the same transitive closure with G = (V,E).

• Sink vertex: A vertex with no outgoing edges.

• Source vertex: A vertex with no incoming edges.

Chapter 2

Path Based Framework

2.1 Introduction

Hierarchical graphs are very important for many applications in several areas of re-
search and business because they often represent hierarchical relationships between
objects in a structure. They are directed (often acyclic) graphs and their visual-
ization has received significant attention recently [19, 49, 56]. Sugiyama, Tagawa,
and Toda proposed a four-phase framework for producing hierarchical drawings of
directed graphs [67]. This is known in the literature as the Sugiyama framework.
Most problems involved in the optimization of various phases of the Sugiyama
framework are NP-hard. An experimental study of four algorithms specifically
designed for DAGs was presented in [20]. A new framework to visualize directed
graphs and their hierarchies which departs from the classical four-phase framework
of Sugiyama is introduced in [58, 59]. It computes readable hierarchical visualiza-
tions in two phases by hiding (abstracting) some selected edges while maintaining
the complete reachability information of a graph. In this paper we present poly-
nomial time algorithms that follow the main framework of [59]. The produced
drawings contain all edges of the input graph and attempt to optimize the height,
width and number of bends of the resulting drawing.

The Sugiyama Framework consists of four main phases [67]: (a) Cycle Removal,
(b) Layer Assignment, (c) Crossing Reduction, and (d) Horizontal Coordinate
Assignment. The reader can find the details of each phase and several proposed
algorithms to solve various of their problems and subproblems in [19, 49], and
the recent Handbook [56]. The new framework of [59] departs from the typical
Sugiyama framework and it consists of two phases: (a) Cycle Removal, (b) the
path/chain decomposition and hierarchical drawing step. This framework is based
on the idea of partitioning the vertices of a graph into paths/chains, drawing the
vertices in each path vertically aligned on some x-coordinate and then drawing the
edges between vertices that belong to different paths.

The Sugiyama framework has been extensively used in practice, as manifested
by the fact that various systems are using it to implement hierarchical drawing

3

4 CHAPTER 2. PATH BASED FRAMEWORK

techniques. Several systems such as AGD [60], da Vinci [29], GraphViz [34],
Graphlet [41], dot [33], OGDF [18], and others implement this framework in order
to draw directed graphs. Commercial software such the Tom Sawyer Software
TS Perspectives [2] and yWorks [3] essentially use this framework in order to
offer automatic visualizations of directed graphs. The comparative study of [20]
concluded that the Sugiyama-style algorithms performed better in most of the
metrics. For more recent information regarding this framework see [56].

Even though it is very popular, the Sugiyama framework has several limi-
tations: as discussed above, most problems and subproblems that are used to
optimize the results in various steps of each phase have turned out to be NP-
hard. Additionally, several of the heuristics employed to solve these problems
give results that are not bound by any approximation. Furthermore, the required
manipulations in the graph often increase substantially its complexity, e.g., up to
O(nm) dummy vertices may be inserted in a directed graph G = (V,E) with n
vertices and m edges. The overall time complexity of this framework (depending
upon implementation) can be as high as O((nm)2), or even higher if one chooses
algorithms that require exponential time. Finally, another important limitation
of this framework is the fact that heuristic solutions and decisions that are made
during previous phases (e.g., crossing reduction) will influence severely the results
obtained in later phases. Nevertheless, previous decisions cannot be changed in
order to obtain better results.

By contrast, in the main framework of [59] most problems of the second phase
can be solved in polynomial time. If a path decomposition contains k paths, the
number of bends introduced is at most O(kn) and the required area is at most
O(kn). In order to minimize the number of crossings between cross edges and
path edges the authors suggest checking all possible k! permutations of the k
paths which may be reasonable for small values of k [58]. However, edges between
non consecutive vertices in a path, called path transitive edges are not drawn in
this framework.

In this paper we present algorithms that are based on the framework of [59]
and offer experimental results comparing them to the results obtained by running
the hierarchical drawing module of OGDF [18], which is based on the Sugiyama
framework. Since the ”cycle removal” is required in both frameworks, we focus our
experiments on the case where the input graph G is acyclic (DAG). Our algorithms
run in almost linear time, and provide better upper bounds than the ones given
in [59]: (a) the height of the resulting drawings is equal to the length of the longest
path of G, which is often significantly lower than n − 1. (b) The path transitive
edges are drawn by our algorithms in such a way that the required extra number
of columns is minimized for each path (see Section 3).

The experimental results show that the drawings produced by our algorithms
have a significantly lower number of bends and are much smaller in area than
the ones produced by OGDF (see Section 4). On the other hand, the drawings
of OGDF have a lower number of crossings when the input graphs are relatively
sparse. However, when the graphs are a bit denser (e.g., average degree higher

2.2. OVERVIEW OF THE TWO FRAMEWORKS 5

than five) our drawings have less crossings. Of course, it is expected that OGDF
would be better than our algorithms in the number of crossings since OGDF places
a significant weight in minimizing crossings, whereas we do not explicitly minimize
crossings. Thus our algorithms offer an interesting alternative to visualize hierar-
chical graphs. Finally, we present an O(m+k log k) time algorithm that computes
a specific order of the paths that further reduces the total edge length, and number
of crossings and bends in sparse DAGs.

2.2 Overview of the Two Frameworks

In order to motivate our discussion about the two frameworks considered in this
paper we present Figure 2.1 that shows a DAG G drawn by these two frameworks:
Part (a) shows a drawing Γ of G computed by our algorithms that customize the
path-based framework of [59]; it is implemented in Tom Sawyer Perspectives [2]
(a tool of Tom Sawyer Software); part (b) shows the drawing of G computed by
OGDF. The graph consists of 31 nodes and 69 edges. The drawing computed
by our algorithms has 74 crossings, 33 bends, width 14, height 16, and area 224.
On the other hand, OGDF computes a drawing that has 72 crossings, 64 bends,
width 42, height 16 and area 672. The width and height reported by OGDF are
961 and 2273, respectively. We had to normalized these figures in order to have
a reasonable comparison, as will be discussed later. As can be observed by these
two drawings, the two frameworks produce vastly different drawings with their
own advantages and disadvantages.

The Path Based Hierarchical Drawing Framework follows an approach to vi-
sualize directed acyclic graphs that hides some edges and focuses on maintaining
their reachability information [59]. This framework is based on the idea of par-
titioning the vertices of the graph G into (a minimum number of) chains/paths,
that we call chain/path decomposition of G, which can be computed in polynomial
time. Therefore, it is orthogonal to the Sugiyama framework in the sense that it
is a vertical decomposition of G into (vertical) paths/chains. Thus, most resulting
problems are vertically contained, which makes them simpler, and reduces their
time complexity. This framework does not introduce any dummy vertices and
keeps the vertices of a path vertically aligned. By contrast, the Sugiyama frame-
work performs a horizontal decomposition of a graph, even though the final result
is a vertical (hierarchical) visualization.

Let Sp = {P1, ..., Pk} be a path decomposition of G such that every vertex
v ∈ V belongs to exactly one of the paths of Sp. Any path decomposition naturally
splits the edges of G into: (a) path edges that connect consecutive vertices in the
same path, (b) cross edges that connect vertices that belong to different paths, and
(c) path transitive edges that connect non-consecutive vertices in the same path.
Given Sp the main algorithm of [59], call it Algorithm PBH, draws the vertices
of each path Pi vertically aligned on some x-coordinate depending on the order of
path Pi. There is one column between paths that is reserved for the bends (if any)

6 CHAPTER 2. PATH BASED FRAMEWORK

(a) (b)

Figure 2.1: In (a) we show the drawing Γ based on G as computed by Tom Sawyer
Perspectives which follows our proposed framework. In (b) we show the drawing
of the graph G as computed by OGDF.

2.3. AN ALGORITHM FOR COMPUTING COMPACT DRAWINGS 7

of some cross edges. Therefore, the total width of the resulting drawing is 2k − 1.
The y-coordinate of each vertex is equal to its order in any topological sorting of
G. Hence the height of the resulting drawing is n − 1. In the algorithms of [59]
path transitive edges are omitted from the final drawing.

Another advantage of the Path-Based Framework is that it works for any given
path decomposition. Therefore, it can be used in order to draw graphs with user-
defined or application-defined paths, as is the case in many applications, see for ex-
ample [21, 28]. If one desires automatically generated paths, there are several algo-
rithms that compute a path decomposition of minimum cardinality [42, 52, 57, 65].
Using a path decomposition with a small cardinality may improve the performance
of our algorithm in terms of area, bends, number of crossings and computational
time. Since certain critical paths are important for many applications, it is ex-
tremely important to produce clear drawings where all such paths are vertically
aligned. For the rest of this chapter, we will assume that a path decomposition of
G is given as part of the input to the algorithm.

OGDF is a self-contained C++ library of graph algorithms, in particular for
(but not restricted to) automatic graph drawing. The hierarchical drawing imple-
mentation of the Sugiyama framework in OGDF is implemented following [31, 64].
The Sugiyama framework in OGDF according to uses the following default choices:
For the first phase of Sugiyama, it uses the LongestPathRanking (a ranking mod-
ule that determines the layering of the graph, i.e., the assignment of vertices into
layers) which implements the well-known longest-path ranking algorithm. Next,
it performs crossing minimization by using BarycenterHeuristic. This mod-
ule performs two-layer crossing minimization and is applied during the top-down
and bottom-up traversals [18]. The crossing minimization is repeated 15 times,
and keeps the best. Each repetition (except for the first) starts with randomly
permuted nodes on each layer. Finally it computes the final coordinates with
FastHierarchyLayout which computes the final layout of graph. The two hier-
archical drawings shown in Figure 2.1 demonstrate the significant differences in
philosophy between the two frameworks.

2.3 An Algorithm for Computing Compact Drawings

We present an extension of the framework of [59] by (a) compacting the drawing
in the vertical direction, and (b) drawing the path transitive edges that were not
drawn in [59]. This approach naturally splits the edges of G into three categories,
path edges, cross edges, and path transitive edges that are drawn differently. This
clearly adds to the understanding of the user and allows a system to show the
different categories separately without altering the user’s mental map.

2.3.1 Compaction

Let G = (V,E) be a DAG with n vertices and m edges. Following the framework
of [58, 59] the vertices of V are placed in a unique y-coordinate, which is specified

8 CHAPTER 2. PATH BASED FRAMEWORK

by a topological sorting. Let T be the list of vertices of V in ascending order based
on their y-coordinates. We start from the bottom and visit each vertex in T in
ascending order. For every vertex v in this order we assign a new y-coordinate,
y(v), following a simple rule that compacts the height of the drawing: ”If v has
no incoming edges then we set its y(v) to 0, else we set y(v) equal to a+ 1, where
a is the highest y-coordinate of the vertices that have edges incoming into v.”

Algorithm 1 takes as input a DAG G, and a path based hierarchical drawing Γ1

of G computed by Algorithm PBH and it produces as output a new, compacted,
path based hierarchical drawing Γ2 with height L, where L is the length of a longest
path in G. Clearly this simple algorithm can be implemented in O(n +m) time.
Figure 2.2 shows an example of two hierarchical drawings of the same graph: Γ1

is before compaction and Γ2 is after compaction.

Algorithm 1 Compaction(G, Γ1)
Input: A DAG G = (V,E), and a path based hierarchical drawing Γ1 of G
computed by Algorithm PBH
Output: A compacted path based hierarchical drawing Γ2 with height L, where
L is the length of a longest path in G.

1: For each v ∈ G:

• Let Ev be the set of incoming edges, e = (w, v), into v:

a. if Ev = ∅ then:
• y(v)=0

b. else:

• y(v)=max{y-coordinates of vertices w with (w, v) ∈ Ev} + 1

Notice that the first case of the if-statement, is executed only for the first
vertex (source) of some paths. Clearly, the rest of the vertices have at least one
incoming edge since they belong to some path where every vertex is connected to
its predecessor. This is the case for the ”else” part. The compacted y-coordinate
for the rest of the vertices will always be equal to ”max {y coordinates of adjacent
vertices to it} +1”. Based on these statements and the fact that the drawing after
compaction is also a path based hierarchical drawing, we have the next two simple
lemmas.

Lemma 2.3.1. Two vertices of the same path cannot have the same y-coordinate.

Lemma 2.3.2. For every vertex v with y(v) ̸= 0, there is an incoming edge into
v that starts from a vertex w such that y(v) = y(w) + 1.

Based on these lemmas the height of the compacted drawing of the graph G is
at most L:

Theorem 2.3.3. Let G = (V,E) be a DAG with n vertices and m edges. Algorithm
Compaction computes in O(n+m) time a hierarchical drawing Γ2 of G with height
L, where L is equal to the length of a longest path in G.

2.3. AN ALGORITHM FOR COMPUTING COMPACT DRAWINGS 9

(a) (b)

Figure 2.2: DAG G of Figure 2.1 drawn without its path transitive edges: (a)
drawing Γ1 is computed by Algorithm PBH, and it is the input of Algorithm 1,
(b) drawing Γ2 is the output of Algorithm 1.

10 CHAPTER 2. PATH BASED FRAMEWORK

Proof. It is clear that the height of the resulting drawing Γ2 cannot be lower that
L, the length of the longest path, due to Lemma 2.3.1 and the fact that all edges
go from a vertex with lower to a vertex with higher y-coordinate. Similarly, the
height of the resulting drawing Γ2 cannot be higher that L since that would imply
that there is a y coordinate that does not contain a vertex of a longest path. In
this case by the initial assumption and Lemma 2.3.2 there is another path that is
longer than L. Hence the height of the resulting drawing Γ2 is equal to L. The
time complexity of Algorithm Compaction is immediate from the fact that we visit
each vertex exactly once, in the order specified by T and consider all its incoming
edges once.

2.3.2 Drawing the Path Transitive Edges

An important aspect of our work is the preservation of the mental map of the user
that can be expressed by the reachability information of a DAG. At this point,
we highlight that for every decomposition path, we have a set of path transitive
edges that are not drawn by the framework of [58, 59]. In this subsection we show
how to draw these edges while preserving the user’s mental map of the previous
drawing. Additionally, one may interact with the drawings by hiding the path
transitive edges at the click of a button without changing the user’s mental map
of the complete drawing.

Now we will describe an algorithm that draws the path transitive edges using
the minimum extra width (minimum extra number of columns) for each decom-
position path. The steps of the algorithm are briefly described as follows:

1. For every vertex of each decomposition path we calculate the indegree and
outdegree based only on path transitive edges, i.e., excluding path edges and
cross edges.

2. If all indegrees and outdegrees are zero the algorithm is over, if not, we
select a vertex v with the highest indegree or outdegree and we bundle all
the incoming or outgoing edges of v, respectively. These bundled edges are
represented by an interval with starting and finishing points, the lowest and
highest y-coordinates of the vertices, respectively.

3. Next, we insert each interval on the left side of the path on the first available
column such that the interval does not overlap with another interval (see
details below).

4. We remove these edges from the set of path transitive edges, update the
indegree and outdegree of the vertices and repeat the selection process.

5. The intervals of the rightmost path, are inserted on the right side of the path
in order to avoid potential crossing with cross edges.

2.4. EXPERIMENTAL RESULTS AND COMPARISONS 11

6. A final, post-processing step can be applied because some crossings between
intervals/bundled edges can be removed by changing the order of the columns
containing them.

(a) (b) (c) (d)

Figure 2.3: Bundling of path transitive edges: (a) incoming edges into node 13,
(b) after bundling, (c) outgoing edges from node 16, (d) after bundling.

The above algorithm can be implemented to run in time O(m + n log n) by
handling the updates of the indegrees and outdegrees carefully, and placing the
appropriate intervals in a (Max Heap) Priority Queue. As expected, the fact that
we draw the path transitive edges increases the number of bends, crossings, and
area, with respect to not drawing them.

For each decomposition path, suppose we have a set of b of intervals such
that each interval I has a start point, sI , and a finish point fI . The starting
point is the position of the vertex of the interval with the lowest y-coordinate.
Similarly, the finish point fI is the position of the node of the interval with the
highest y-coordinate. We follow a greedy approach in order to minimize the width
(number of columns) for placing the bundled edges. The approach is similar to
Task Scheduling [36], for placing the intervals. It uses the optimum number of
columns and runs in O(b log b) time, for each path with b intervals. This is done
by considering the intervals of each decomposition path in increasing order of their
starting points. We select each interval (resp. task) according to its starting point
and place it into the first column that can fit (i.e., does not intersect with another
interval). If there are no available columns, we allocate a new column and place
the interval there. Since the sum of all b’s for all paths in a path decomposition
is at most n we conclude that the algorithm runs in O(n log n) time. The proof of
correctness is similar to the one for Task Scheduling in [36] and thus it is omitted
here.

Theorem 2.3.4. Let G = (V,E) be a DAG with n vertices and m edges. There is
an algorithm that computes a drawing of G bundling the path transitive edges for
each path using the minimum number of columns (width) per path. The algorithm
runs in O(m+ n log n) time and computes a compact hierarchical drawing of G.

2.4 Experimental Results and Comparisons

We performed experiments in order to compare the results produced by the two
frameworks on different DAGs with varying number of nodes and edges. We use

12 CHAPTER 2. PATH BASED FRAMEWORK

20 DAGs that were produced in a random, but controlled, fashion in order to
have small and large DAGs, but with a predefined average degree. Furthermore,
in order to evaluate the performance of the two drawing frameworks, we use the
following standard metrics:

• Number of crossings.

• Number of bends.

• Width of the drawing: The total number of distinct x coordinates that are
used by the framework.

• Height of the drawing: The total number of distinct y coordinates that are
used by the framework.

• Area of the drawing: The area of the enclosing rectangle.

Figure 2.4 shows a table that contains the results of our experiments based
on these metrics for PBF as implemented in TS Perspectives [2] compared to
the results produced by OGDF. In order to be consistent with the experimental
settings of OGDF, we used the default parameters. In the experiments that we
present in this section we see that in all cases our approach gives better results
than the ones produced by OGDF with respect to the number of bends, width,
height, and as expected the total area of the drawings. For the number of bends we
observe that our proposed technique produces bends that are a small fraction of n,
whereas OGDF produces bends that are proportional to m. The bar charts shown
in Figure 2.5 show how the number of bends grows as the DAGs grow in size and
average degree and provide a clear evidence that the number of bends for PBF
is significantly lower than OGDF in all cases. On the other hand, the drawings
of OGDF have a lower number of crossings when the input graphs are relatively
sparse. However, when the graphs are a bit denser (e.g., average degree higher
than five) our drawings start having less crossings. Since the two frameworks use
a different coordinate system, for a fair comparison between them we chose to count
as height of a drawing the number of different layers (or different y-coordinates)
and as width the number of different x-coordinates of nodes and bends, used by
each system. In other words, we normalize the two coordinate systems by mapping
them on a ”grid.”

In general, our experiments show that PBF produces readable drawings with
very good results almost in all metrics, except for the number of crossings. Addi-
tionally, it clearly partitions the edges into three distinct categories, and vertically
aligns certain paths, which can be user defined. This can be a great advantage
in certain applications and therefore it seems to be an interesting alternative, as
also shown in Figure 6 for a larger example. PBF does not perform any crossing
reduction step, in contrast to OGDF which offers crossing minimization algorithms
by default (also required by the Sugiyama framework), which are run several times
in order to keep the best result.

2.4. EXPERIMENTAL RESULTS AND COMPARISONS 13

Figure 2.4: Results on number of crossings, bends, width, height and area for PBF
and OGDF for all DAGs in our study.

14 CHAPTER 2. PATH BASED FRAMEWORK

Figure 2.5: Results on the number of bends for PBF and OGDF for all DAGs in
our study.

(a) (b)

Figure 2.6: An example of a DAG with 100 nodes and 175 edges drawn with (a)
PBF, and (b) OGDF.

2.5. CONCLUSIONS AND OPEN PROBLEMS 15

2.4.0.1 A Heuristic for Ordering the Paths:

As described in [58], one way to minimize the number of crossings between cross
edges and path edges (and path transitive edges, now) is to check all possible k!
permutations of the k paths. In order to reduce the number of crossings between
the cross edges and path (transitive) edges, we implemented a heuristic that aims
to reduce the number of paths crossed by cross edges. Our fast and simple approach
is described below.

We create an undirected path graph by placing a node for each path P . For any
pair of paths P1 and P2 we find the total number of cross edges between them, c,
and we insert an (undirected) edge between the nodes corresponding to paths P1

and P2 with weight equal to c. Hence, the weight, c, of edge (P1, P2) is the sum of
the number of cross edges directed from P1 to P2 plus the number of cross edges
from P2 to P1. We do this for all cross edges between all paths. Next, we order the
paths following a greedy process: We find the maximum-weight edge and we place
the corresponding paths next to each other. We remove the edge from the path
graph and continue with this process until it contains no edges. If we select an edge
such that both paths are already placed, we simply delete this edge and proceed. If
we select an edge such that one of the two paths is not already placed, then we place
it at the rightmost (or leftmost) side of the placed path, depending upon which side
has the least number of paths placed. This algorithm uses data structures similar
to Kruskal’s [51] algorithm for computing a minimum (maximum) spanning tree
and it can be implemented in O(m + k log k) time. We performed some limited
experiments on sparse graphs (with average degree 1.25, 1.75, and 3) using this
path ordering algorithm, and we found out that the produced drawings have lower
number of crossings, bends, and edge length. Unfortunately, for denser graphs the
results are inconclusive.

2.5 Conclusions and Open Problems

We present algorithms and experimental results comparing two hierarchical draw-
ing frameworks: (a) the path-based framework and (b) OGDF, which is based
on the Sugiyama technique. Our compaction algorithm runs in linear time, and
produces drawings with height equal to the length of a longest path of G instead
of n − 1 which is the height of drawings produced in [59]. In this implementa-
tion we present an algorithm to bundle and draw the path transitive edges of G
in O(m + n log n) time, which is an extension of the original path based frame-
work [59]. The experimental results show that the drawings produced by our
algorithms have significantly lower number of bends and are much smaller in area
than the ones produced by OGDF, but they have more crossings for sparse graphs.
Thus our algorithms offer an interesting alternative when we visualize hierarchical
graphs. They focus on showing important aspects of the graph such as critical
paths, path transitive edges, and cross edges. For this reason, this framework is
particularly useful in graph visualization systems that encourage user interaction.

16 CHAPTER 2. PATH BASED FRAMEWORK

There are several interesting open problems: 1) Find better algorithms to order
the paths. 2) Find techniques to reduce the number of crossings. 3) Allow some
extra vertical space between selected vertices in order to make the visualization
more visually appealing.

Chapter 3

Path/Chain Decomposition

3.1 Introduction

Searching for efficient ways to decompose the graph into chains, we could not find
an efficient solution that scales on large graphs. An efficient chain decomposition
has many applications and can facilitate many algorithms and systems. In this
work, we develop an almost linear chain decomposition algorithm that produces
a set of chains with almost minimum cardinality. We use the notion of chain
decomposition to offer bounds to the transitive edges and explore how it facilitates
in transitive closure problem.

In Section 3.2, we present path decomposition approaches, and in Section 3.3
we present chain decomposition and path concatenation. Additionally, we show
experiments and evaluate the performance of our heuristic. Furthermore, we ex-
amine a few outcomes. In section 3.4, we prove that |Ered| ≤ width ∗ |V |, and see
how we can in linear time, remove a subset of transitive edges and bound |E−E′

tr|
by k ∗ |V | given a path/chain decomposition of size k. Finally, section 3.5 demon-
strates how to build a known indexing scheme for computing transitive closure of
a graph and we report experimental results.

We conducted all the experiments using a laptop PC (Intel(R) Core(TM) i5-
6200U CPU, 8 GB of main memory).

3.2 Path Decomposition

Jagadish in [44] categorized path decomposition techniques into two categories.
Chain Order Heuristics and Node Order Heuristics. The first constructs the paths
one by one, while the second creates the paths in parallel. More precisely, in
[44], Jagadish presented chain decomposition heuristics based on Chain Order
Heuristic and Node Order Heuristic. He utilized a list of all successors and not
only the immediate for each vertex. However, his algorithms require O(n2) time
using the precomputed transitive closure. That is inefficient, especially for large
graphs, and we will not examine them further. Our heuristic does not need any

17

18 CHAPTER 3. PATH/CHAIN DECOMPOSITION

(a) A path decomposition
of a graph. It consists of 4
paths.

(b) A chain decomposition
of the same graph. It con-
sists of 2 chains.

Figure 3.1: On the left, there is a path decomposition of graph G. On the right, a
chain decomposition of G.

3.2. PATH DECOMPOSITION 19

precomputation of the transitive closure and decomposes the graph into a number
kc of chains in O(|E| + c ∗ l) time which in practice is almost linear. Factor c is
the number of concatenations, and l is the length of a longest path of the graph.
We will describe our technique in detail in the next section.

In this section, we describe the linear time algorithms for path decomposition.
We use topological sorting and examine the vertices in ascending order.

Chain Order Heuristic

The chain-order heuristic starts from a vertex and keeps on extending the path to
the extent possible. The path ends when no more unused immediate successors
can be found. As you can see in Algorithm 2, the first for loop finds an unused
vertex and creates a path. The inner while loop extends the path.

Algorithm 2 Path Decomposition (CO)

procedure ChainOrderHeuristic(G,T)
INPUT: A DAG G = (V,E), and a topological sorting T (v1, ..., vi, ..., vN) of
G
OUTPUT: A path decomposition of G

K ← ∅ //Set of paths

Mark all nodes unused
for every unused vertex vi ∈ T in ascending topological order do

current← vi
C ← new Chain()
Add current to C
while there is an unused immediate successor s of the current node

do
add s to C
current← s

end while
add C to K

end for
end procedure

Node Order Heuristic

The node-order heuristic examines each node and assigns it to an existing path.
If there is no matching, then a new path is created for the vertex. Algorithm 3
illustrates the node order heuristic.

20 CHAPTER 3. PATH/CHAIN DECOMPOSITION

Algorithm 3 Path Decomposition (NO)

procedure NodeOrderHeuristic(G,T)
INPUT: A DAG G = (V,E), and a topological sorting T (v1, ..., vi, ..., vN) of G
OUTPUT: A path decomposition of G

K ← ∅ //Set of paths

for every vertex vi ∈ T in ascending topological order do
if vi is an immediate successor of the last node of a chain C then

add vi to C
else

C ← new Chain()
add vi to C
add C to K

end if
end for

end procedure

3.3 Chain Decomposition

In this section, we present a path concatenation technique that takes as input any
path decomposition and constructs a chain decomposition in O(|E| + c ∗ l) time,
where c is the number of path concatenations and l is the longest path of the
graph. In order to apply our path concatenation algorithm, we first find a path
decomposition of the graph. We can use an already known linear-time algorithm
based on Node-Order Heuristic or Chain Order Heuristic.

3.3.1 Path Concatenation

Our concatenation algorithm can work for any path decomposition. Given a graph
G = (V,E) and its path decomposition Dp with kp paths we build a chain decom-
position of kc chains in O(|E|+ (kp − kc) ∗ l) time, where l is the longest path of
G. Since each concatenation reduces the number of chains by one, factor (kp− kc)
is the number of path concatenations.

For every path, we start a reverse DFS lookup function from the first vertex
of the chain, looking for the last vertex of another chain traversing the edges
backward. The DFS lookup function is the well-known depth-first search graph
traversal for path finding. If the DFS lookup function detects the last vertex of
a chain, then it concatenates the chains. If we do merely that the algorithm will
run in O(kp ∗ |E|) since we run kp DFS functions. In our case, every DFS lookup
function will take advantage of the previous DFS lookup functions’ executions.
DFS for path finding returns the path between the source vertex and the target
vertex. In our case, the path between the first vertex of a chain and the last vertex
of another chain. Hence, every execution goes through a set of vertices Vi that can
be split into two vertex disjoint sets, Ri and Pi. In Pi belong the vertices of the

3.3. CHAIN DECOMPOSITION 21

path from the source vertex to the destination vertex. In Ri belong every vertex
in Vi − Pi. If no path is found then Vi = Ri and Pi = ∅.

Notice that every vertex in the set Ri is not the last vertex of a chain. If it
was then it would belong to Pi and not to Ri. The same way, for every vertex in
Ri, all its predecessors are in Ri too. Hence, if a forthcoming reverse DFS lookup
function meets a vertex of Ri, there is no reason to proceed with its predecessors.
All the above are basic DFS theory.

Algorithm 4 Concatenation

procedure Concatenation(G,D)
INPUT: A DAG G = (V,E), and a path decomposition D of G
OUTPUT: A chain decomposition of G

for each path: pi ∈ D do
fi ← first vertex of pi
(Ri, Pi)← reverse DFS lookup(G, fi)
if Pi ̸= ∅ then

li ← destination vertex of Pi //Last vertex of a path

Merge Paths(li, fi)
end if
G← G \Ri

end for
end procedure

Algorithm 4 shows our chain concatenation technique. As you see, the DFS
lookup function is invoked for every starting vertex of a path. Every reverse DFS
lookup function goes through the set Ri and the set Pi, examining the nodes and
their incident edges. Pi is the path from the first vertex of a chain to the last vertex
of another. The set Ri contains all of the vertices the function went through except
the vertices of Pi.

Theorem 3.3.1. The time complexity of Algorithm 4 is O(|E|+ (kp − kc) ∗ l).

Proof. Assume that we have kp paths. We call kp times the reverse DFS lookup
function. Hence, we have (Ri, Pi) sets, 0 ≤ i < kp. In every loop, we delete the
vertices of Ri. Hence, Ri ∩ Rj = ∅ ,0 ≤ i, j < kp and i ̸= j. We conclude that
kp−1⋃
i=0

Ri ⊆ N and
∑kp−1

i=0 |Ri| ≤ |N |.

Path Pi, 0 ≤ i < kp, is not empty if and only if concatenation has occurred.

Hence,
∑kp−1

i=0 |Pi| ≤ c ∗ l where c is the number of concatenations and l is the
longest path of the graph. Since every concatenation reduces the number of chains
by one, we have c = kp − kc.

22 CHAPTER 3. PATH/CHAIN DECOMPOSITION

3.3.2 Chain Decomposition Heuristic: A Better Approach

Previously, we described how to produce a chain decomposition applying a con-
catenation step after path decomposition. At this point, we will demonstrate an
approach which not only runs in O(|E| + c ∗ l) time but it also finds a close to
optimal chain decomposition.

We present Algorithm 5, which is a variation of Node Order Heuristic (Algo-
rithm 3). It is like the Node Order heuristic but with two additions. The first
is that when we visit a vertex with out-degree 1, we add its unique immediate
successor to its path. The second is that we do not merely search for the first
available immediate predecessor that is the last vertex of a path. Instead of the
first available vertex, we choose an available vertex with the highest out-degree.
Our aim using this heuristic is to create a chain construction in which more con-
catenations will occur. Algorithm 4 goes through all vertices. For every vertex, it
examines all the outgoing (line 8) and all the incoming edges (line 19). Hence, the
time complexity is linear.

Algorithm 6 illustrates our chain decomposition which is a combination of
Algorithm 5 with chain concatenation. The only addition to Algorithm 4 is the if-
statement of line 10 and its block. If we do not find an immediate predecessor, we
search all predecessors using the reverse DFS lookup function. The differentiation
of our concatenation is that it does not take part as a post-processing step. It is
applied on time when the algorithm does not find an immediate predecessor that
is the last vertex of a chain. We do it to avoid transitive edges that could lead to
false matches.

3.3.3 Experiments

In this section, we present experiments on graphs created by NetworkX [40]. We
used three different random graph generator models. Erdos-Renyi, Barabasi, and
Watts-Strogatz model. Additionally, we use Path-Based DAG Model. For every
model, we created 12 graphs. Six of 5000 nodes and six graphs of 10000 nodes and
average degree 5,10,20,40,80, and 160. We examine the performance of heuristics
in terms of the chains’ number. We compute the minimum set of chains by us-
ing the Fulkerson’s method [24]. Our aim is to reveal the behavior of the width
and the behavior of heuristics used on graphs of these models. We noticed that
the graphs generated by the same generator with the same parameters have in-
significant width deviation (In three graphs created with the same parameters,
the percentage of deviation on Erdos-Renyi and Path-Based model is about 5%
and Barabasi model 10%. The Watts-Strogatz model deviation is higher, but that
happens because the width has low values).

Fulkerson’s method:

1. Construct transitive closure G∗(V,E′) of the graph, where V = {v1, ..., vn}.

3.3. CHAIN DECOMPOSITION 23

Algorithm 5 Path Decomposition (H3)

1: procedure Node-Order based variation(G,T)
INPUT: A DAG G = (V,E), and a topological sorting T (v1, ..., vi, ..., vN) of
G
OUTPUT: A path decomposition of G

2: K ← ∅ //Set of paths

3: for every vertex vi ∈ T in ascending topological order do
4: Chain C
5: if ui is assigned to a chain then
6: C ← ui’s chain
7: else if vi is not assigned to a chain then
8: li ← choose the immediate predecessor with the lowest outdegree
9: that is the last vertex of a chain

10: if li ̸= null then
11: C ← path indicated by li
12: add vi to C
13: else
14: C ← new Chain()
15: add vi to C
16: end if
17: add C to K
18: end if
19: if there is an immediate successor si of ui with in-degree 1 then
20: add si to C
21: end if
22: end for
23: end procedure

2. Construct a bipartite graphB with bipartite (V1, V2), where V 1 = {x1, x2, ..., xn},
V 2 = {y1, y2, ..., yn}. An edge (xi, yj) is formed whenever (vi, vj) ∈ E′

3. Find a maximal matching M of B. The width of the graph is n − |M |. In
order to construct the minimum set of chains, for any two edges e1, e2 ∈M ,
if e1 = (xi, yt) and e2 = (xt, yj) then connect e1 to e2

Random Graph Generators:

• Erdős-Rényi model [27]: The generator returns a binomial graph. The
generator’s parameters are two, the number of nodes n and a probability p.
Every edge in this model has a probability p to be formed.

• Barabási–Albert [9]: A graph of n nodes is grown by attaching new nodes
each with m edges that are preferentially attached to existing nodes with
high degree. The factors n and m are parameters to the algorithm.

24 CHAPTER 3. PATH/CHAIN DECOMPOSITION

Algorithm 6 Chain Decomposition (H3 conc.)

1: procedure NodeOrder based variation with concatenation(G,T)
INPUT: A DAG G = (V,E), and a topological sorting T (v1, ..., vi, ..., vN) of
G
OUTPUT: A path decomposition of G

2: K ← ∅ //Set of paths

3: for every vertex vi ∈ T in ascending topological order do
4: Chain C
5: if ui is assigned to a chain then
6: C ← ui’s chain
7: else if vi is not assigned to a chain then
8: li ← choose the immediate predecessor with the lowest outdegree
9: that is the last vertex of a chain

10: if li = null then
11: (Ri, Pi)← reverse DFS lookup(G, ui)
12: if Pi ̸= ∅ then
13: li ← destination vertex of Pi

14: end if
15: G← G \Ri

16: end if
17: if li ̸= null then
18: C ← path indicated by li
19: add vi to C
20: else
21: C ← new Chain()
22: add vi to C
23: end if
24: add C to K
25: end if
26: if there is an immediate successor si of ui with in-degree 1 then
27: add si to C
28: end if
29: end for
30: end procedure

• Watts–Strogatz [76]: This model returns a Watts–Strogatz small-world
graph. First it creates a ring over n nodes. Then each node in the ring is
joined to its k nearest neighbors. Then shortcuts are created by replacing
some edges as follows: for each edge (u,v) in the underlying “n-ring with k
nearest neighbors” with probability b replace it with a new edge (u,w) with
uniformly random choice of existing node w. The factors n,k, and b are the
generator’s parameters.

3.3. CHAIN DECOMPOSITION 25

• Path-Based DAG Model [55]: In this model, graphs are randomly gener-
ated based on a number of predefined but randomly created paths.

To make the directed graphs acyclic, only edges from low to high ID are inserted.
For more info about the generators see networkx documentation [40].

Table 3.1 shows the width and the number of chains created by the heuristics
for every graph of 5000 nodes. Table 3.2 shows the same for graphs of 10000 nodes.
The tables’ abbreviations are explained below:

• CO: Path decomposition using Chain Order Heuristic. (Algorithm 2)

• CO conc.: Chain decomposition using Chain Order Heuristic and our con-
catenation technique. (Algorithm 2 followed by Algorithm 4)

• NO: Path decomposition using Node Order Heuristic. (Algorithm 3)

• NO conc.: Chain decomposition using Node Order Heuristic and our con-
catenation technique. (Algorithm 3 followed by Algorithm 4)

• H3: Path decomposition using our Node Order Heuristic variation from
section 3.3.2. (Algorithm 5)

• H3 conc.: Chain decomposition using our technique from section (Algo-
rithm 6)

• Width: The width of the graph (Fulkerson’s method).

As we see, in both tables our chain decomposition (H3 conc.) performs better
than the others since it produces fewer chains. To visualize how close is the
outcome of our heuristic to the width, we made some charts. In Figures 3.4, 3.5,
and 3.6, you can see how close is the blue line to the red one for Erdos Renyi,
Barabsi Albert, and Watts Strogatz model. The red line indicates the width and
the blue the chains produced by our technique.

Furthermore, we explore the behavior of the width on these models. Notice
that the Barabasi Albert model produces graphs with a larger width than Erdos-
Renyi. Respectively, the Erdos-Renyi model creates graphs with a larger width
than Watts-Strogatz. For the Watts Strogatz model, we create two sets of graphs.
The first has probability b equals 0.9 and the second 0.3. If the probability b of
rewiring an edge is 0, the width would be one. That happens because the generator
initially creates a path that goes through all vertices. As probability b grows, the
width grows. That’s the reason we choose a low and a high probability. Figure
3.2a and 3.2b demonstrates the behavior of the width for each model on the graphs
of 5000 and 10000 nodes. Another interesting observation is that the width of the

Erdos Renyi model follows the curve width = nodes
average degree

.

All heuristics run in few milliseconds thus we do not elaborate on running time.
In the following sections, we present partially run-time metrics in tables 3.4,3.5,
and 3.3.

26 CHAPTER 3. PATH/CHAIN DECOMPOSITION

Table 3.1: Comparing path and chain decomposition algorithms on graphs with
5000 nodes.

3.3. CHAIN DECOMPOSITION 27

Table 3.2: Comparing path and chain decomposition algorithms on graphs with
10000 nodes.

28 CHAPTER 3. PATH/CHAIN DECOMPOSITION

(a) The width curve on graphs of 5000 nodes.

(b) The width curve on graphs of 10000 nodes.

Figure 3.2: The width curve on graphs of 5000 and 10000 nodes using three dif-
ferent models.

3.3. CHAIN DECOMPOSITION 29

Figure 3.3: A comparison between Erdos-Renyi model and Path Based model.

Figure 3.4: The efficiency of our chain decomposition algorithm in Barabasi Albert
model.

30 CHAPTER 3. PATH/CHAIN DECOMPOSITION

Figure 3.5: The efficiency of our chain decomposition algorithm in Erdos Renyi
model.

3.3. CHAIN DECOMPOSITION 31

Figure 3.6: The efficiency of our chain decomposition algorithm in Watts-Strogatz
model.

32 CHAPTER 3. PATH/CHAIN DECOMPOSITION

Figure 3.7: The efficiency of our chain decomposition algorithm in Path Based
model.

3.4. HIERARCHIES AND TRANSITIVITY 33

3.4 Hierarchies and Transitivity

Lemma 3.4.1. Given a chain decomposition D of a DAG G = (V,E), each vertex
vi ∈ V , 0 ≤ i < |V |, can have at most one outgoing non-transitive edge per chain.

Proof. Given a graph G(V,E), a decomposition D(C1, C2, ..., Ckc) of G, and a
vertex v ∈ V , assume vertex v has two outgoing edges, (v, t1) and (v, t2), and both
t1 and t2 are in chain Ci. The vertices are in ascending topological order in the
chain by definition. Assume t1 has a lower topological rank than t2. Thus, there
is a path from t1 to t2, and accordingly a path from v to t2 through t1. Hence, the
edge (v, t2) is transitive. See Figure 3.8a.

Lemma 3.4.2. Given a chain decomposition D of a DAG G = (V,E), each vertex
vi ∈ V , 0 ≤ i < |V |, can have at most one incoming non-transitive edge per chain.

Proof. Similar to the proof of proposition 3.4.1. See figure 3.8b.

(a) (b)

Figure 3.8: Example for the proof of Lemma 3.4.2. The blue edges are transitive.
(a) shows the outgoing transitive edges that end to the same chain. (b) shows the
incoming transitive edges that start from the same chain.

Theorem 3.4.3. Let G = (V,E) be a DAG with width w. The non-transitive
edges of G are less than or equal to width ∗ |V |, in other words Ered = E −Etr ≤
width ∗ |V |.

34 CHAPTER 3. PATH/CHAIN DECOMPOSITION

Proof. Given any DAG G and its width w, there is a chain decomposition of G
with w number of chains. From Lemma 3.4.1, every vertex of G could have only
one outgoing, non-transitive edge per chain, thus its non-transitive outgoing edges
cannot be more than w ∗ |V |. Notice that the same stands for the incoming edges,
according to Lemma 3.4.2.

According to Theorem 3.4.3, the time complexity of Algorithm 6 can be ex-
pressed as O(kc ∗ |Ered|) = O(kc ∗width∗ |V |) since |Ered| ≤ width∗ |V |. Addition-
ally, the chains rarely have the same length. Usually, the decomposition consists
of a few long chains and several shorter chains. Hence, for most of the graphs it
is not even possible |Ered| = width ∗ |V |, |Ered| it usually is much less than that.
We present experimental results that confirm this in table 3.4 and 3.5.

Also, an essential application of Lemma 3.4.1 and 3.4.2 is that we can find a
subset of Etr in linear time. Given a chain decomposition or a path decomposition
with kc chains, we can trace the vertices and their outgoing edges and keep the
edges that point to the lowest point of each chain, rejecting the rest as transitive.
We do the same for the incoming edges keeping the edges that come from the
highest point (vertex with highest topological rank) of each chain. This way, we
find a subset E′

tr ⊆ Etr. Hence, |E−E′
tr| ≤ kc∗|V |. This linear time preprocessing

can facilitate every transitive closure technique bounding the input graph edges,
and the indegree and outdegree of every vertex by kc. For example, algorithms
based on tree cover, see [5, 15, 71, 75], are practical on sparse graphs and can be
enhanced further with a preprocessing step that removes transitive edges.

3.5 Indexing Scheme

In this section, we present an important application of our chain decomposition
technique. We solve the transitive closure problem by creating an indexing scheme
that is based on chain decomposition.

Jagadish described a compressed transitive closure technique in 1990 [44] ap-
plying the indexing scheme and path/chain decomposition. As we discussed, Ja-
gadish’s heuristic for chain decomposition runs in O(n2) using the pre-computed
transitive closure. Our technique outperforms that. It runs in almost linear time
without using a pre-computed transitive closure, and the outcome is close to the
optimal. Furthermore, his method focuses on compression and does not answer
queries in constant time.

Simon, see [66], describes that indexing scheme too. He calculates a path
decomposition, boosting the method presented in [38]. The linear time heuristic he
presented is Chain Order Heuristic. In the following sections, we show that using
our channel decomposition technique outperforms finding the indexing scheme
using merely a path decomposition.

We build our solution in O(kc ∗ |Ered|) time, where using our solution, we can
answer queries in constant time. kc is the number of chains and |Ered| is the number
of non-transitive edges. Additionally, we will show that |Ered| ≤ width ∗ |V |. The

3.5. INDEXING SCHEME 35

space complexity of our algorithm is O(kc∗|V |). Furthermore, we present extensive
experimental work, and we show both in theory and practice the efficiency of our
approach.

By finding the strongly connected components, we can make any directed graph
acyclic. All vertices of a SCC will form a supernode since any vertex is reachable
from any other vertex in the same component. This is a well-known step, so we
assume that the input of our method is a DAG. The steps given a DAG are:

1. Perform Chain decomposition

2. Sort Adjacency lists

3. Create Indexing Scheme

In step 1, we use our chain decomposition technique that runs in O(|E| + c ∗ l).
In step 2, we sort the adjacency lists in O(|V |+ |E|) time. Finally, we create the
indexing scheme in O(kc∗|Ered|) time and O(kc∗|V |) space. If we had done merely
path decomposition, the time complexity would be O(kp ∗ |Ered|) and O(kp ∗ |V |)
space. Probably, you have already noticed the relation between step 1 and step 3.
The fewer chains the first step gives, the more efficient becomes the third.

3.5.1 The Indexing Scheme

Assume there is a chain decomposition of a DAG G with size kc. Its indexing
scheme includes a pair and an array of indexes of size kc for every vertex. See
for example Figure 3.9. The first integer of the pair indicates the node’s chain
and the second its position in the chain. For example, vertex 1 of Figure 3.9 has
(1, 1). The node belongs to the 1st chain, and it is the 1st element in it. Given
a chain decomposition, we can easily construct the pairs in O(|V |) time with a
traversal of the chains. Every cell of the kc size array represents a chain. The i-th
cell represents the i-th chain. The entry in the i-th cell corresponds to the lowest
point of the i-th chain the vertex can reach. For example, the array of vertex 1 is
[1, 3, 2]. The first cell of the array indicates that vertex 1 can reach the 1st vertex
of the first chain (can reach itself, reflexive property). The second cell of the array
indicates that vertex 1 can reach the 3nd vertex of the second chain (There is a
path from vertex 1 to vertex 7). Finally, the third cell of the array indicates that
vertex 1 can reach the 2rd vertex of the third chain.

Notice that we do not need the second integer of any pair. If we know the
chain a vertex belongs in, we can conclude its position using the array. We present
it like that to make it easier to understand.

The process of answering a reachability query is simple. Assume, there is a
vertex s and a target vertex t. To find if the vertex t is reachable from the s, we
get t’s chain, and we use it as an index in s’s array. Hence, we know the lowest
point of t’s chain vertex s can reach. s can reach t if that point is less than or
equal to t’s position, else it cannot.

36 CHAPTER 3. PATH/CHAIN DECOMPOSITION

Figure 3.9: An example of an indexing scheme.

3.5. INDEXING SCHEME 37

3.5.2 Sorting Adjacency lists

Algorithm 7 sorts the adjacency list of every vertex. More precisely, it sorts the
adjacency lists of immediate successors in ascending topological order in linear
time. The variable stack indicates the sorted adjacency list. The algorithm tra-
verses the vertices in reverse topological order (vn, ..., v1). For every vertex vi,
1 ≤ i ≤ n, it pushes vi in the stacks of all immediate predecessors. This step
could be performed even before the chain decomposition as a preprocessing step.
We present it in this section to emphasize its crucial role in the indexing scheme
creation. If the adjacency list is not sorted the time complexity of the algorithm
would be O(kc ∗ |E|) instead of O(kc ∗ |Ered|).

Algorithm 7 Sorting Adjacency lists

procedure Sort(G, t)
INPUT: A DAG G = (V,E) and a topological sorting t of G

for each vertex: vi ∈ G do
vi.stack ← new stack()

end for
for each vertex vi in reverse topological order do

for every incoming edge e(sj , vi) do
sj .stack.push(vi)

end for
end for

end procedure

Lemma 3.5.1. Algorithm 7 sorts the adjacency lists of immediate successors in
ascending topological order.

Proof of Lemma 3.5.1. Assume that there is a stack (u1, ..., un), u1 is the top of
the stack. Assume that there is a pair (uj , uk) in the stack, where uj has a
bigger topological rank than uk and uj precedes uk. That means that the for-loop
examined uj before uk since it goes through the vertices in reverse topological
order. This is a contradiction. The vertex uj cannot precede uk if it was examined
first by the for-loop.

3.5.3 Creating the Indexing Scheme.

Algorithm 8 constructs the indexing scheme. The first for-loop initializes the array
of indexes. For every vertex, it initializes the cell that corresponds to its chain.
The rest of the cells are initialized to infinite. The indexing scheme initialization
is illustrated in figure 3.10. The dashes represent the infinite. Notice that after
the initialization, the indexes of all sink vertices have been calculated. Since a sink
has no successors, the only vertex it can reach is itself.

The second for-loop builds the indexing scheme. It goes through vertices in
descending topological order. For each vertex, it visits its immediate successors

38 CHAPTER 3. PATH/CHAIN DECOMPOSITION

Algorithm 8 Indexing Scheme

1: procedure Create Indexing Scheme(G,T,D)
INPUT: A DAG G = (V,E), a topological sorting T of G, and the decompo-
sition D of G.

2: for each vertex: vi ∈ G do
3: vi.indexes ← new table[size of D]
4: vi.indexes.fill(∞)
5: ch no← vi’s chain index
6: pos← vi’s chain position
7: vi.indexes[ch no]← pos
8: end for
9: for each vertex vi in reverse topological order do

10: while vi.stack ̸= ∅ do
11: target← vj .stack.pop()
12: t ch← target’s chain index
13: t pos← target’s chain position
14: if t pos < vi.indexes[t ch] then // (vi, target) is not transitive

15: vi.updateIndexes(target.indexes)
16: end if
17: end while
18: end for
19: end procedure

3.5. INDEXING SCHEME 39

Figure 3.10: Initialization of indexes.

40 CHAPTER 3. PATH/CHAIN DECOMPOSITION

(outgoing edges) in ascending topological order and updates the indexes. Suppose
we have the edge (v, s), and we have calculated the indexes of vertex s (s is
immediate successor of v). The process of updating the indexes of v with its
immediate successor s means that s will pass all its information to the vertex v.
Hence, vertex v will be aware that it can reach s and all its successors. Assume
the array of indexes of v is [a1, a2, ..., akc] and the array of s is [b1, b2, ..., bkc]. To
update the indexes of v using s, we merely trace the arrays and keep the smallest
values. For every pair of indexes (ai, bi), 0 ≤ i < kc, the new value of ai will be
min{ai , bi}. This process needs kc steps.

Lemma 3.5.2. Given a vertex v and the calculated indexes of its successors, the
while-loop of algorithm 8 (lines 10-17) calculates the indexes of v by updating its
array with its non-transitive outgoing edges’ successors.

Proof. Updating the indexes of vertex v with all its immediate successors will make
v aware of all its descendants. The while-loop of Algorithm 8 does not perform
the update function for every direct successor. It skips all the transitive edges.
Assume there is such a descendant t and the transitive edge (v, t). Since the edge
is transitive, we know by definition that there exists a path from v to t with a
length of more than 1. Suppose that the path is (v, v1, .., t). with a traversal of the
chains. Vertex v1 is a predecessor of t and immediate successor of v. Hence it has
a lower topological rank than t. Since, while-loop examines the incident vertices
in ascending topological order, then vertex t will be visited after vertex v1. The
opposite leads to a contradiction. Consequently, for every incident transitive edge
of v, the loop firstly visits a vertex v1 which is a predecessor of t. Thus vertex v
will be firstly updated by v1 and it will record the edge (v, t) as transitive. There
is no reason to update vertex v indexes with those of vertex t since the indexes of
t will be greater or equal.

Theorem 3.5.3. Let G = (V,E) be a DAG. Algorithm 8 computes the indexing
scheme in O(kc ∗ |Ered|) time.

Proof of Theorem 3.5.3. In the initialization step, the indexes of all sink vertices
have been computed as we described above. Taking vertices in reverse topological
order, the first vertex we meet is a sink vertex. When the for-loop of line 9 visits the
first non-sink vertex, the indexes of its successors are computed (all its successors
are sink vertices). According to Lemma 1, we can calculate its indexes, ignoring
the transitive edges. Assume the for-loop has reached the vertex vi in the i − th
iteration, and the indexes of its successors are calculated. Similarly, from Lemma
1, we can calculate its indexes. By induction, we can calculate the indices of all
vertices, ignoring all transitive edges in O(|Ered| ∗ kc) time.

3.5.4 Experiments

We used the same graphs of 5000 and 10000 nodes as we described in Section
3.3.3 produced by three different models of the Networkx. We performed chain

3.5. INDEXING SCHEME 41

decomposition using our approach (Alg. 6, H3 conc), and created the indexing
scheme using Algorithm 8). Assume the sorting of the adjacency list is a prepro-
cessing step (Alg. 7) and the input graph has sorted adjacency lists. We recorded
our results in Tables 3.4 and 3.5. Table 3.4 holds the results of graphs with 5000
nodes, and Table 3.5 the results of graphs with 10000 nodes. Next, we explain the
columns of the tables.

• Av. Degree: The average degree of the graph

• Chains: Number of chains computed by our heuristic (H3 conc).

• |Etr|: Number of transitive edges.

• |Ered|: Number of non-transitive edges.

• |Etr|/|E|: The percentage of transitive edges.

• H3 conc Time (ms): The time, in milliseconds, of the chain decomposition
step.

• Indexing Scheme Time (ms): The time, in milliseconds, of the indexing
scheme creation step.

• Total: The total time(ms) needed to decompose the graph and create the
indexing scheme. It is the sum of the two preceding cells.

• TC: The time needed by a known algorithm for transitive closure with time
complexity O(|V | ∗ |E|). The algorithm performs a DFS function for every
vertex to mark reachable vertices. It stores the results in a 2-D adjacency
matrix.

The phase of indexing scheme creation needs kc ∗ |Ered| + |Etr| steps. The num-
bers on the tables are interesting. As the average degree increases and the graph
becomes denser, the cardinality of Ered remains almost stable, and the chains de-
crease. Of course, since the Ered does not vary as the average degree increases, the
cardinality of Etr increases (Etr = E−Ered). The algorithm merely traces in linear
time the transitive edges. Consequently, the growth of Etr does not affect the run
time considerably. As a result, the run time of our technique does not increase
as the input graph increases. To demonstrate it clearly, we drew the line chart
of figure 3.11 for the graphs of 10000 nodes produced by the Erdos-Renyi model.
The blue line represents the run time of the indexing scheme, and the red line the
run time of the algorithm based on DFS (TC). The time of the algorithm based
on DFS increases as the average degree increases, while the time of the indexing
scheme is a straight line parallel to the x-axis. All models follow this pattern. See
Tables 3.4 and 3.5.

We decompose the graph into chains with our algorithm since it is the most
efficient. A chain decomposition is preferable to a path decomposition if we create

42 CHAPTER 3. PATH/CHAIN DECOMPOSITION

(a) Metrics: Creating the indexing scheme in combination with the chain order
heuristic.

(b) Metrics: Creating the indexing scheme in combination with algorithm 6 for
chain decomposition.

Table 3.3: The tables present the run time of indexing scheme using path and
chain decomposition.

the indexing scheme. Assume that we have a path decomposition, and we perform
chain concatenation. If there is no concatenation between two paths, the concate-
nation algorithm will run in linear time, which is an acceptable cost. On the other
hand, if there are concatenations, for each one of them, the cost is O(l) time units
but the gain in the following step of scheme creation is |V | units of space and
|Ered| units of time. That stands because every concatenation reduces the indexes
we need for every vertex by one. Hence, applying path concatenation, we create
faster a more compact indexing scheme.

Tables 3.3a and 3.3b include metrics of creating the indexing scheme using
different decomposition techniques on Erdos Reyni graphs of 10000 nodes. In table
3.3a, we have created the indexing scheme using the chain order heuristic(path
decomposition), while in table 3.3b, we use our chain decomposition algorithm.

3.6 Conclusions

In this work, we present heuristics that find a chain decomposition in almost linear
time and such that the number of chains can be very close to the minimum. Our

3.6. CONCLUSIONS 43

Table 3.4: Indexing scheme analysis on graphs of 5000 nodes.

44 CHAPTER 3. PATH/CHAIN DECOMPOSITION

Table 3.5: Indexing scheme analysis on graphs of 10000 nodes.

3.6. CONCLUSIONS 45

Figure 3.11: Run time comparison between the Indexing Scheme (blue line) and
TC (red line) for Erdos-Renyi model on graphs of 10000 nodes. See table 3.5.

experiments expose the behavior of the width as the density grows, along with the
efficiency of our heuristics. We bound the set Ered by width ∗ |V | and illustrate
how to find a subset of Etr in linear time given a path/chain decomposition.
Our approach and theory have applications in many areas. We applied them
to the problem of transitive closure. We built in O(width ∗ kc ∗ |V |) time and
O(kc ∗ |V |) space an indexing scheme that allows us to answer reachability queries
in constant time. The time complexity is O(kc ∗ |Ered|), and the space complexity
is O(kc ∗ |V |). Additionally, our experimental work reveals the practical efficiency
of this approach, especially for very large, and medium to dense graphs.

46 CHAPTER 3. PATH/CHAIN DECOMPOSITION

Bibliography

[1] Jfree.

[2] Tom Sawyer Software.

[3] yWorks.

[4] R. Agrawal. Alpha: an extension of relational algebra to express a class of
recursive queries. IEEE Transactions on Software Engineering, 14(7):879–885,
1988.

[5] Rakesh Agrawal, Alexander Borgida, and Hosagrahar Visvesvaraya Jagadish.
Efficient management of transitive relationships in large data and knowledge
bases. ACM SIGMOD Record, 18(2):253–262, 1989.

[6] A. V. Aho, M. R. Garey, and J. D. Ullman. The transitive reduction of a
directed graph. SIAM Journal on Computing, 1(2):131–137, 1972.

[7] Aaron Bangor, Philip Kortum, and James Miller. Determining what individ-
ual sus scores mean: Adding an adjective rating scale. Journal of usability
studies, 4(3):114–123, 2009.

[8] Michael J. Bannister, David A. Brown, and David Eppstein. Confluent orthog-
onal drawings of syntax diagrams. In Emilio Di Giacomo and Anna Lubiw,
editors, Graph Drawing and Network Visualization - 23rd International Sym-
posium, GD 2015, Los Angeles, CA, USA, September 24-26, 2015, Revised
Selected Papers, Lecture Notes in Computer Science, pages 260–271, 2015.

[9] Albert-László Barabási and Réka Albert. Emergence of scaling in random
networks. science, 286(5439):509–512, 1999.

[10] Paola Bonizzoni. A linear-time algorithm for the perfect phylogeny haplotype
problem. Algorithmica, 48(3):267–285, 2007.

[11] Nicolas Boria, Gianpiero Cabodi, Paolo Camurati, Marco Palena, Paolo
Pasini, and Stefano Quer. A greedy approach to answer reachability queries
on dags. arXiv preprint arXiv:1611.02506, 2016.

47

48 BIBLIOGRAPHY

[12] Ulrik Brandes and Boris Köpf. Fast and simple horizontal coordinate assign-
ment. In Graph Drawing, 9th International Symposium, GD 2001 Vienna,
Austria, September 23-26, 2001, Revised Papers, pages 31–44, 2001.

[13] Christoph Buchheim, Michael Jünger, and Sebastian Leipert. A fast layout
algorithm for k -level graphs. In Graph Drawing, 8th International Sympo-
sium, GD 2000, Colonial Williamsburg, VA, USA, September 20-23, 2000,
Proceedings, pages 229–240, 2000.

[14] Manuel Cáceres, Massimo Cairo, Brendan Mumey, Romeo Rizzi, and Alexan-
dru I Tomescu. A linear-time parameterized algorithm for computing the
width of a dag. In International Workshop on Graph-Theoretic Concepts in
Computer Science, pages 257–269. Springer, 2021.

[15] Li Chen, Amarnath Gupta, and M Erdem Kurul. Stack-based algorithms for
pattern matching on dags. In Proceedings of the 31st international conference
on Very large data bases, pages 493–504. Citeseer, 2005.

[16] Yangjun Chen and Yibin Chen. On the dag decomposition. British Jour-
nal of Mathematics and Computer Science, 2014. 10(6): 1-27, 2015, Article
no.BJMCS.19380, ISSN: 2231-0851.

[17] Yangjun Chen and Yibin Chen. On the graph decomposition. In 2014 IEEE
Fourth International Conference on Big Data and Cloud Computing, pages
777–784. IEEE, 2014.

[18] Markus Chimani, Carsten Gutwenger, Michael Jünger, Gunnar W. Klau,
Karsten Klein, and Petra Mutzel. The open graph drawing framework
(OGDF). In Handbook on Graph Drawing and Visualization., pages 543–569.
2013.

[19] Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis.
Graph Drawing: Algorithms for the Visualization of Graphs. Prentice-Hall,
1999.

[20] Giuseppe Di Battista, Ashim Garg, Giuseppe Liotta, Armando Parise,
Roberto Tamassia, Emanuele Tassinari, Francesco Vargiu, and Luca Vismara.
Drawing directed acyclic graphs: An experimental study. In Stephen C. North,
editor, Graph Drawing, Symposium on Graph Drawing, GD ’96, Berkeley,
California, USA, September 18-20, Proceedings, volume 1190 of Lecture Notes
in Computer Science, pages 76–91. Springer, 1996.

[21] Giuseppe Di Battista, E Pietrosanti, Roberto Tamassia, and Ioannis G Tollis.
Automatic layout of pert diagrams with x-pert. In [Proceedings] 1989 IEEE
Workshop on Visual Languages, pages 171–176. IEEE, 1989.

BIBLIOGRAPHY 49

[22] Emilio Di Giacomo, Walter Didimo, Giuseppe Liotta, Fabrizio Montecchiani,
and Ioannis G Tollis. Exploring complex drawings via edge stratification. In
International Symposium on Graph Drawing, pages 304–315. Springer, 2013.

[23] R. P. DILWORTH. A decomposition theorem for partially ordered sets. Ann.
Math., 52:161–166, 1950.

[24] Fulkerson DR. Note on dilworth’s embedding theorem for partially ordered
sets. Proc. Amer. Math. Soc., 52(7):701–702, 1956.

[25] Peter Eades and Nicholas C. Wormald. Edge crossings in drawings of bipartite
graphs. Algorithmica, 11(4):379–403, 1994.

[26] Markus Eiglsperger, Martin Siebenhaller, and Michael Kaufmann. An effi-
cient implementation of Sugiyama’s algorithm for layered graph drawing. In
János Pach, editor, Graph Drawing, pages 155–166, Berlin, Heidelberg, 2005.
Springer Berlin Heidelberg.

[27] P Erdős. Rényi, a.:” on random graphs. I”. Publicationes Mathematicae
(Debre, 1959.

[28] Donald L Fisher andWilliamMGoldstein. Stochastic pert networks as models
of cognition: Derivation of the mean, variance, and distribution of reaction
time using order-of-processing (op) diagrams. 1983.

[29] Michael Fröhlich and Mattias Werner. Demonstration of the interactive graph-
visualization system da Vinci. In Graph Drawing, DIMACS International
Workshop, GD ’94, Princeton, New Jersey, USA, October 10-12, 1994, Pro-
ceedings, pages 266–269, 1994.

[30] Delbert Ray Fulkerson. Note on dilworth’s decomposition theorem for par-
tially ordered sets. In Proc. Amer. Math. Soc, volume 7, pages 701–702, 1956.

[31] Emden R Gansner, Eleftherios Koutsofios, Stephen C North, and K-P Vo.
A technique for drawing directed graphs. IEEE Transactions on Software
Engineering, 19(3):214–230, 1993.

[32] Emden R. Gansner, Eleftherios Koutsofios, Stephen C. North, and Kiem-
Phong Vo. A technique for drawing directed graphs. IEEE Trans. Software
Eng., 19(3):214–230, 1993.

[33] Emden R. Gansner, Eleftherios E. Koutsofios, and Stephen C. North. Drawing
graphs with dot. 2015.

[34] Emden R. Gansner and Stephen C. North. An open graph visualization
system and its applications to software engineering. Softw., Pract. Exper.,
30(11):1203–1233, 2000.

50 BIBLIOGRAPHY

[35] Mohammad Ghoniem, J-D Fekete, and Philippe Castagliola. A comparison
of the readability of graphs using node-link and matrix-based representations.
In IEEE symposium on information visualization, pages 17–24. Ieee, 2004.

[36] Michael T. Goodrich and Roberto Tamassia. Algorithm Design and Applica-
tions. Wiley Publishing, 1st edition, 2014.

[37] Michael T Goodrich and Roberto Tamassia. Algorithm design and applica-
tions. Wiley Hoboken, 2015.

[38] Alla Goralč́ıková and Václav Koubek. A reduct-and-closure algorithm for
graphs. In International Symposium on Mathematical Foundations of Com-
puter Science, pages 301–307. Springer, 1979.

[39] Jens Gramm, Till Nierhoff, Roded Sharan, and Till Tantau. Haplotyping with
missing data via perfect path phylogenies. Discrete Applied Mathematics,
155(6-7):788–805, 2007.

[40] Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network struc-
ture, dynamics, and function using networkx. Technical report, Los Alamos
National Lab.(LANL), Los Alamos, NM (United States), 2008.

[41] Michael Himsolt. Graphlet: design and implementation of a graph editor.
Softw., Pract. Exper., 30(11):1303–1324, 2000.

[42] John E. Hopcroft and Richard M. Karp. An n5/2 algorithm for maximum
matchings in bipartite graphs. SIAM J. Comput., 2(4):225–231, 1973.

[43] Selma Ikiz and Vijay K Garg. Efficient incremental optimal chain partition
of distributed program traces. In 26th IEEE International Conference on
Distributed Computing Systems (ICDCS’06), pages 18–18. IEEE, 2006.

[44] H. V. Jagadish. A compression technique to materialize transitive closure.
ACM Trans. Database Syst., 15(4):558–598, December 1990.

[45] H. V. Jagadish. A compression technique to materialize transitive closure.
ACM Trans. Database Syst., 15(4):558–598, 1990.

[46] Ruoming Jin, Ning Ruan, Saikat Dey, and Jeffrey Xu Yu. SCARAB: scal-
ing reachability computation on large graphs. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, SIGMOD 2012,
Scottsdale, AZ, USA, May 20-24, 2012, pages 169–180, 2012.

[47] Ruoming Jin, Yang Xiang, Ning Ruan, and Haixun Wang. Efficiently answer-
ing reachability queries on very large directed graphs. In Proceedings of the
2008 ACM SIGMOD international conference on Management of data, pages
595–608, 2008.

BIBLIOGRAPHY 51

[48] Michael Jünger, Petra Mutzel, and Christiane Spisla. A flow formulation
for horizontal coordinate assignment with prescribed width. In Graph Draw-
ing and Network Visualization - 26th International Symposium, GD 2018,
Barcelona, Spain, September 26-28, 2018, Proceedings, pages 187–199, 2018.

[49] Michael Kaufmann and Dorothea Wagner. Drawing graphs: Methods and
models. LNCS vol. 2025, 2001.

[50] Evgenios M. Kornaropoulos and Ioannis G. Tollis. Algorithms and bounds
for overloaded orthogonal drawings. Journal of Graph Algorithms and Appli-
cations, 20(2):217–246, 2016.

[51] Joseph B Kruskal. On the shortest spanning subtree of a graph and the trav-
eling salesman problem. Proceedings of the American Mathematical society,
7(1):48–50, 1956.

[52] Anna Kuosmanen, Topi Paavilainen, Travis Gagie, Rayan Chikhi, Alexan-
dru I. Tomescu, and Veli Mäkinen. Using minimum path cover to boost
dynamic programming on dags: Co-linear chaining extended. In Research in
Computational Molecular Biology - 22nd Annual International Conference,
RECOMB 2018, Paris, France, April 21-24, 2018, Proceedings, pages 105–
121, 2018.

[53] Lei Li, Wen Hua, and Xiaofang Zhou. HD-GDD: high dimensional graph dom-
inance drawing approach for reachability query. World Wide Web, 20(4):677–
696, 2017.

[54] Panagiotis Lionakis, Giacomo Ortali, and Ioannis Tollis. Adventures in ab-
straction: Reachability in hierarchical drawings. In Graph Drawing and Net-
work Visualization: 27th International Symposium, GD 2019, Prague, Czech
Republic, September 17–20, 2019, Proceedings, pages 593–595, 2019.

[55] Panagiotis Lionakis, Giacomo Ortali, and Ioannis G Tollis. Constant-time
reachability in dags using multidimensional dominance drawings. SN Com-
puter Science, 2(4):1–14, 2021.

[56] Nikola S. Nikolov and Patrick Healy. Hierarchical Drawing Algorithms, in
Handbook of Graph Drawing and Visualization, ed. Roberto Tamassia. CRC
Press, 2014. pp. 409-453.

[57] James B. Orlin. Max flows in O(nm) time, or better. In Symposium on Theory
of Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013,
pages 765–774, 2013.

[58] Giacomo Ortali and Ioannis G Tollis. Algorithms and bounds for drawing
directed graphs. In International Symposium on Graph Drawing and Network
Visualization, pages 579–592. Springer, 2018.

52 BIBLIOGRAPHY

[59] Giacomo Ortali and Ioannis G. Tollis. A new framework for hierarchical draw-
ings. Journal of Graph Algorithms and Applications, 23(3):553–578, 2019.

[60] Frances Newbery Paulisch and Walter F. Tichy. EDGE: an extendible graph
editor. Softw., Pract. Exper., 20(S1):S1, 1990.

[61] Micha A Perles. A proof of dilworth’s decomposition theorem for partially
ordered sets. Israel Journal of Mathematics, 1(2):105–107, 1963.

[62] Sergey Pupyrev, Lev Nachmanson, and Michael Kaufmann. Improving layered
graph layouts with edge bundling. In Ulrik Brandes and Sabine Cornelsen,
editors, Graph Drawing - 18th International Symposium, GD 2010, Konstanz,
Germany, September 21-24, 2010. Revised Selected Papers, Lecture Notes in
Computer Science, pages 329–340, 2010.

[63] Helen C Purchase, John Hamer, Martin Nöllenburg, and Stephen G
Kobourov. On the usability of lombardi graph drawings. In International
symposium on graph drawing, pages 451–462. Springer, 2012.

[64] Georg Sander. Layout of compound directed graphs. Technical report, Uni-
versität des Saarlandes, 1996.

[65] Claus-Peter Schnorr. An algorithm for transitive closure with linear expected
time. SIAM J. Comput., 7(2):127–133, 1978.

[66] K. SIMON. An improved algorithm for transitive closure on acyclic digraphs.
Theor. Comput. Sci., 58(1-3):325–346, 1988.

[67] Kozo Sugiyama, Shojiro Tagawa, and Mitsuhiko Toda. Methods for visual
understanding of hierarchical system structures. IEEE Trans. Systems, Man,
and Cybernetics, 11(2):109–125, 1981.

[68] Kozo Sugiyama, Shojiro Tagawa, and Mitsuhiko Toda. Methods for visual un-
derstanding of hierarchical system structures. IEEE Transactions on Systems,
Man, and Cybernetics, 11(2):109–125, 1981.

[69] Robert Tarjan. Depth-first search and linear graph algorithms. In 12th Annual
Symposium on Switching and Automata Theory (swat 1971), pages 114–121,
1971.

[70] Alexander I Tomlinson and Vijay K Garg. Monitoring functions on global
states of distributed programs. Journal of Parallel and Distributed Computing,
41(2):173–189, 1997.

[71] Silke Trißl and Ulf Leser. Fast and practical indexing and querying of very
large graphs. In Proceedings of the 2007 ACM SIGMOD international con-
ference on Management of data, pages 845–856, 2007.

BIBLIOGRAPHY 53

[72] Edward R Tufte. The visual display of quantitative information, volume 2.
Graphics press Cheshire, CT, 2001.

[73] Sebastiaan J. van Schaik and Oege de Moor. A memory efficient reachability
data structure through bit vector compression. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, SIGMOD 2011,
Athens, Greece, June 12-16, 2011, pages 913–924, 2011.

[74] Renê Rodrigues Veloso, Löıc Cerf, Wagner Meira Jr., and Mohammed J.
Zaki. Reachability queries in very large graphs: A fast refined online search
approach. In Proceedings of the 17th International Conference on Extending
Database Technology, EDBT 2014, Athens, Greece, March 24-28, 2014., pages
511–522, 2014.

[75] Haixun Wang, Hao He, Jun Yang, Philip S Yu, and Jeffrey Xu Yu. Dual
labeling: Answering graph reachability queries in constant time. In 22nd In-
ternational Conference on Data Engineering (ICDE’06), pages 75–75. IEEE,
2006.

[76] Duncan J Watts and Steven H Strogatz. Collective dynamics of ’small-world’
networks. nature, 393(6684):440–442, 1998.

[77] Hilmi Yildirim, Vineet Chaoji, and Mohammed J. Zaki. GRAIL: a scalable
index for reachability queries in very large graphs. VLDB J., 21(4):509–534,
2012.

